秦九韶算法公式及结论
秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。秦九韶(约公元1202年-1261年),字道古,南宋末年人,出生于鲁郡(今山东曲阜一带人)。
计算方法
一般地,一元n次多项式的求值需要经过(n+1)*n/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。
把一个n次多项式
改写成如下形式:
求多项式的值时,首先计算最内层括号内一次多项式的值,即
V1=an*x+a n-1
然后由内向外逐层计算一次多项式的值,即
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
结论:对于一个n次多项式,至多做n次乘法和n次加法。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。