第五单元 长方体和正方体的体积
本单元教育目标是:
1、通过实例,了解体积(包括容积)的意义,认识体积的度量单位“立方米、立方分米、立方厘米”,感受1立方米、1立方分米、1立方厘米的实际意义;知道1立方分米=1升,1立方厘米=1毫升,会进行简单的体积单位之间的换算。
2、结合具体情境,探索并掌握长方体、正方体的体积计算公式,会用公式进行计算。
3、在建立体积概念以及探索长方体、正方体体积公式的过程中,进一步发展空间观念。
4、能探索出解决问题的有效方法,并试图寻其它方法;能表达解决问题的过程,并尝试解释所得的结果。
5、感受数学与日常生活的密切联系,有自主尝试解决问题的成功的体验,增强学好数学的自信心。
第一课时 认识体积和体积单位
教学目标:
1、结合实验和具体事物,经历建立体积概念和体积单位的过程。
2、了解体积的意义及度量单位,感受1立方米、1立方分米、1立方厘米的实际意义。
3、在实验、观察、交流等认识体积和体积单位的活动中,发展学生的空间意识。
教学重难点:
了解体积的意义及度量单位,感受1立方米、1李芳分米、1立方厘米的实际意义。
教学过程:
一、认识体积
1、激趣引入。
师:同学们,你们听过乌鸦喝水的故事吗?
生:听过。
师:谁愿意把这个故事给大家讲一讲。
指名学生讲故事。
师:乌鸦是怎么喝到水的?
生l:乌鸦把石头放进瓶子,瓶子里的水就升上来了,这样乌鸦就喝到水了。
师:为什么把石头放进瓶子,瓶子里的水就升上来了?
引导学生说出石头占了水的空间,所以把水挤上来了。
2、实验证明。
师:石头真的占了水的空间吗?我们再来做个实验验证一下。
教师取两个同样的玻璃杯,放入同样多的水(可在水中滴一滴墨水)。把一个土豆和一块小石头分别放入两个杯中。
猜一猜:水面会发生什么变化?
3、揭示体积。
师:同学们请大家用手在书桌的抽屉里摸一摸,说说有什么感觉。
生摸并说感觉。
师:请把书包放进抽屉,再用手摸一摸,现在又有什么感觉?
生1:手在抽屉里活动起来不方便了。
生2:手要从书包缝里才能放进去。
师:这是为什么?
生3:因为书包把抽屉的空间占了。
师:对,刚才石头把水挤上来,书包把抽屉的空间变小了,都说明物体占有一定的空间。那你们知道石头和书包谁占的空间大吗?
生4:书包占的空间比石头大,因为书包大,石头小。
师出示下面的图,问:你们知道这些物体哪个占的空间大?
学生回答后,师说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书)
师:谁能说说什么是火柴盒的体积?什么是文具盒的体积?什么是鞋盒的体积?
学生回答。
师:谁的体积大、谁的体积小呢?
生:鞋盒的体积最大,文具盒的体积第二大,火柴盒的体积最小。
师:你们是怎么知道的?
生:我是看出来的。
教师总结:物体所占空间的大小叫做物体的体积。
二、引出体积单位
测量物体的体积要用体积单位。常用的体积单位有:立方厘米、立方分米和立方米。
棱长是1厘米的正方体,体积是1立方厘米,记作1
师:请你们,周围有哪些物体的体积接近1cm3。
生1:一个手指尖的体积近似于1cm3。
生2:计算机键盘的按钮的体积近似于lcm3。
棱长是1分米的正方体,体积是1立方分米,记作
师:请出1dm3的正方体,与1cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1dm3吗?
生3:一个拳头的体积大约是1dm3。
生4:一个粉笔盒的体积大约是1dm3。
棱长是1米的正方体,体积是1立方米,记作1。
师:1m3有多大?
生:是棱长1m的正方体。
师:你能想像出1m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1m3有多大,它和你想像的大小一样吗?
师:大家估计一下,它大约能容纳几个同学?
生1:6个。
生2:10个。
验证(前排的12个同学钻到了正方体里。)
师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1m3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?
生:4cm3。
师:为什么?
生1:因为它是由4个体积是1cm3的小正方体摆成的。
师:(从粉笔盒的纸盒中拿出2盒粉笔)你能估计这个纸盒的体积是多少立方分米吗?
生:大约是2dm3。
师:为什么?
生:因为刚才你从这个纸盒里拿出了两盒粉笔,而每盒粉笔大约是1dm3,2盒粉笔就是2dm3。
一毫升等于多少立方厘米 三、巩固练习
四、小结
板书设计:
物体所占空间的大小叫做物体的体积。
体积单位:1立方米、1立方分米、1立方厘米
教学后记:
第二课时 长方体的体积
教学目标:
1、在摆长方体、数据整理、观察讨论等活动中,经历探索长方体体积公式的过程。
2、掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。
3、在探索长方体体积公式的活动中,感受数学问题的探索性和数学结论的确定性。
教学重难点:
掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。
教学过程:
一、复习旧知,呈现课题
1、体积是指什么?常用的体积单位有哪些?什么是1立方厘米,1立方分米,1立方米?
2、体积是4立方厘米的正方体里含有多少个体积是1立方厘米的小正方体?那么,体积是8立方厘米、10立方厘米呢?这说明了什么?(生:体积是多少就含有多少个体积单位。)
(师出示一长方体教具)
师:你能猜出这个长方体的体积是多少吗?
生:长方体的体积=长×宽×高
师:你怎么知道的?
生:我以前问过我爸爸。
师:你真是一个勤学上进的孩子!
师:你们对他的回答有什么问题想问吗?
生:为什么长方体的体积=长×宽×高。
二、观察操作,实验探究长方体体积的计算方法
1、探索活动:
小组合作(每四人一组做实验并记录):用40个体积是1立方厘米的小正方体,分别搭出不同的长方体,并填写下表。
活动前师友情提示:
(1)每个小组用40个体积是1立方厘米的小正方体摆出4个不同的长方体;
(2)注意观察你所摆的长方体有几层?每层有几行?每行有几块小正方体?你所摆的长方体的长、宽、高分别是多少?
(3)我的发现是___。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论