提高数学成绩的最好方法
数学是一门较难学的科目,单一的靠死记硬背是学不好的,所以很多学生的基础都很差,导致数学成绩难以提高。那么,如何提高数学成绩呢?小编整理了提高数学成绩的方法让你成绩突飞猛进,供大家参考!
一、帮你提高数学成绩的方法:
1、培养良好的学习兴趣
常言到:兴趣是最好的老师,有兴趣才能产生爱好,爱好它才会去实践它,达到乐在其中,才会形成学习的主动性和积极性。就自然的会立志学好数学,成为数学学习的成功者。就连孔子不是也说过:知之者不如好之者,好之者不如乐之者。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
2、培养良好的学习习惯
很多数学成绩不好或是基础差的同学都没有一个好的学习习惯。良好的学习习惯会让你的学习
感到有序和轻松,高中数学良好的学习习惯应该是:多质疑、勤思考、好动手、重归纳、注意应用。在跟着老师脚步学习的过程中应该养成把老师讲的知识翻译成自己的特殊语言,并永久记忆在自己的脑海中。
3、重视课内要听讲,课后要及时复习
数学知识的掌握九成都是来自课堂,所以要特别重视课内的学习环境,寻求正确的学习方法。上课时要跟紧搞事的思路,积极的开展思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。课后要及时复习不留疑点。在做各种习题之前将老师所讲的知识点回忆一遍。认真独立完成作业。要养成不总就问的学习作风。
4、多参加一些数学学习活动
在平时的学习中,要多注意一些不同的学习场所,不如说自己多参加一些有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。在做习题的时候,对于老师讲的一题多解、举一反三等内容要加强训练。在课堂上也要全新投入,认真参与,最终达到自己思维、知识等各方面能力的全面提高。
怎样提高学习成绩
学数学,基本功最重要,就如同你想练习武功,最早就是从扎马步开始,基础越扎实,可能达到的高度就越高;也如同盖楼一样,根基扎的深,扎实,楼才可能稳固。而数学思想,也是这基本功中的一部分。做题不如总结规律,总结规律的意义就是在总结数学思想,数学加特意将初中常见的17中思维方式总结出来,希望对大家有帮助!
二、数学思维方法,帮你提高成绩:
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子
和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。
15、变中抓不变的思想方法
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论