(完整版)函数的单调性与最值(含例题详解)
函数的单调性与最值
    一、知识梳理
1.增函数、减函数
一般地,设函数f(x)的定义域为I,区间DI,如果对于任意x1x2D,且x1<x2,则
有:(1)f(x)在区间D上是增函数⇔f(x1)<f(x2)
    (2)f(x)在区间D上是减函数⇔f(x1)>f(x2).
2.单调区间的定义
若函数yf(x)在区间D上是增函数减函数,则称函数yf(x)在这一区间上具有(严格
的)单调性,区间D叫做yf(x)的单调区间.
3.函数的最值
前提
设函数yf(x)的定义域为I,如果存在实数M满足
条件
①对于任意xI,都有f(x)≤M;②存在x0I,使得f(x0)=M
①对于任意xI,都有f(x)≥M;②存在x0I,使得f(x0)=M
结论
M为最大值
M为最小值
注意:
1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间
只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 
符号“∪”联结,也不能用“或”联结.
2.两函数f(x),g(x)在x∈(ab)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但
    f(xg(x),等的单调性与其正负有关,切不可盲目类比.
[试一试]
1.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.y=ln(x+2)          B.y=-
C.      D.yx
解析:选A 选项A的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.
2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为______;f(x)max=________.
解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)maxf(-2)=f(4)=8.
答案:[1,4] 8
二、方法归纳
1.判断函数单调性的四种方法
(1)定义法:取值、作差、变形、定号、下结论;
(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;
(3)图像法:如果f(x)是以图像形式给出的,或者f(x)的图像易作出,可由图像的直观性
判断函数单调性.
(4)导数法:利用导函数的正负判断函数单调性.
2.求函数最值的五个常用方法
(1)单调性法:先确定函数的单调性,再由单调性求最值.
(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.
(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.
(4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不
等式求出最值.
(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.
提醒:在求函数的值域或最值时,应先确定函数的定义域.
[练一练]
1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y      B.y=ex
C.y=-x2+1      D. y=lg|函数单调性x|
答案:C
2.函数f(x)=在区间[2,3]上的最大值是________,最小值是________.
答案: 
  三、考点精练
考点一    求函数的单调区间
1、函数的单调增区间是________.
解析:要使有意义,则,即,而
上的增函数,当时,u=2x+1也为R上的增函数,故原函数的单调增区间是
.
答案:
2.函数yx-|1-x|的单调增区间为________.
解析:yx-|1-x|=
作出该函数的图像如图所示.
由图像可知,该函数的单调增区间是(-∞,1].
答案:(-∞,1]
3.设函数yf(x)在内有定义.对于给定的正数k,定义函数 取函数,当k时,函数的单调递增区间为(  )
A.(-∞,0)          B.(0,+∞)
C.(-∞,-1)      D.(1,+∞)
解析:选C 由f(x)>,得-1<x<1.
f(x)≤,得x≤-1或x≥1.
所以的单调递增区间为(-∞,-1).
[解题通法]
求函数单调区间的方法与判断函数单调性的方法相同即:
(1)定义法;(2)复合法;(3)图像法;(4)导数法.
考点二    函数单调性的判断
[典例] 试讨论函数的单调性.
[解] 法一:由解析式可知,函数的定义域是.在(0,+∞)内任取
,令,那么
因为,所以.
故当时,,即函数在上单调递增.
时,,即函数在上单调递减.
考虑到函数是奇函数,在关于原点对称的区间上具有相同的单调
性,故在单调递增,在上单调递减.
综上,函数f(x)在上单调递增,在上单调
递减.
[解题通法]
1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底.
2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.
[针对训练]
判断函数g(x)=在 (1,+∞)上的单调性.
解:任取x1x2∈(1,+∞),且x1<x2
由于1<x1<x2,所以x1x2<0,(x1-1)(x2-1)>0,
因此g(x1)-g(x2)<0,即g(x1)<g(x2).
g(x)在(1,+∞)上是增函数.
考点三    函数单调性的应用
角度一 求函数的值域或最值
1.已知函数f(x)对于任意xy∈R,总有f(x)+f(y)=f(xy),且当x>0时,f(x)<0,
    f(1)=-.
(1)求证:f(x)在R上是减函数;
(2)求f(x)在[-3,3]上的最大值和最小值.
解:(1)证明:∵函数f(x)对于任意xy∈R,
总有f(x)+f(y)=f(xy),∴令xy=0,得f(0)=0.
再令y=-x,得f(-x)=-f(x).
在R上任取x1>x2,则x1x2>0,
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1x2).
又∵当x>0时,f(x)<0,
x1x2>0,∴f(x1x2)<0,即f(x1)<f(x2).
因此f(x)在R上是减函数.
(2)∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数,
f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).
f(3)=3f(1)=-2,f(-3)=-f(3)=2.
f(x)在[-3,3]上的最大值为2,最小值为-2.
角度二 比较两个函数值或两个自变量的大小
2.已知函数f(x)=log2x,若x1∈(1,2),x2∈(2,+∞),则(  )
A.f(x1)<0,f(x2)<0      B.f(x1)<0,f(x2)>0

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。