与国家数据库不一致的困难项
与国家数据库不一致的困难项
在实际应用Redis缓存时,我们经常会遇到一些异常问题,概括来说有4个方面:缓存中的数据和国家数据库中的不一致;缓存雪崩;缓存击穿和缓存穿透。
只要我们使用Redis缓存,就必然会面对缓存和数据库间的一致性保证问题,这也算是Redis缓存应用中的“必答题”了。
最重要的是,如果数据不一致,那么业务应用从缓存中读取的数据就不是最新数据,这会导致严重的错误。
比如说,我们把电商商品的库存信息缓存在Redis中,如果库存信息不对,那么业务层下单操作就可能出错,这当然是不能接受的。
首先,我们得清楚“数据的一致性”具体是啥意思。其实,这里的“一致性”包含了两种情况:
word怎么分页缓存中有数据,那么,缓存的数据值需要和数据库中的值相同;
wendy坠台事件
缓存中本身没有数据,那么,数据库中的值必须是最新值。
不符合这两种情况的,就属于缓存和数据库的数据不一致问题了。
不过,当缓存的读写模式不同时,缓存数据不一致的发生情况不一样,我们的应对方法也会有所不同,所以,我们先按照缓存读写模式,来分别了解下不同模式下的缓存不一致情况。
棉花糖是谁发明的?>不错的小说
对于读写缓存来说,如果要对数据进行增删改,就需要在缓存中进行,同时还要根据采取的写回策略,决定是否同步写回到数据库中。
同步直写策略:写缓存时,也同步写数据库,缓存和数据库中的数据一致;
异步写回策略:写缓存时不同步写数据库,等到数据从缓存中淘汰时,再写回数据库。使用这种策略时,如果数据还没有写回数据库,缓存就发生了故障,那么,此时,数据库就没有最新的数据了。
所以,对于读写缓存来说,要想保证缓存和数据库中的数据一致,就要采用同步直写策略。不过,需要注意的是,如果采用这种策略,就需要同时更新缓存和数据库。所以,我们要在业务应用中使用事务机制,来保证缓存和数据库的更新具有原子性,也就是说,两
者要不一起更新,要不都不更新,返回错误信息,进行重试。否则,我们就无法实现同步直写。
当然,在有些场景下,我们对数据一致性的要求可能不是那么高,比如说缓存的是电商商品的非关键属性或者短视频的创建或修改时间等,那么,我们可以使用异步写回策略。apple id忘记密码
下面我们再来说说只读缓存。对于只读缓存来说,如果有数据新增,会直接写入数据库;而有数据删改时,就需要把只读缓存中的数据标记为无效。这样一来,应用后续再访问这些增删改的数据时,因为缓存中没有相应的数据,就会发生缓存缺失。此时,应用再从数据库中把数据读入缓存,这样后续再访问数据时,就能够直接从缓存中读取了。
申请出国留学的流程

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。