一、 GPS/北斗系统及其定位原理
GPS/全球定位系统(英语:Global Positioning System,通常简称GPS),又称全球卫星定位系统,是一个中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和时间的需要。该系统包括太空中的24颗GPS卫星;地面上1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。最少只需其中3颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度;所能收联接到的卫星数越多,解码出来的位置就越精确。
该系统由美国政府于1970年代开始进行研制并于1994年全面建成。使用者只需拥有GPS接收机即可使用该服务,无需另外付费。GPS信号分为民用的标准定位服务(SPS,Standard Positioning Service)和军规的精确定位服务(PPS,Precise Positioning Service)两类。由于SPS无须任何授权即可任意使用,原本美国因为担心敌对国家或组织会利用SPS对美国发动攻击,故在民用讯号中人为地加入选择性误差(即SA政策,Selective Availability)以降低其精确度,使其最终定位精确度大概在100米左右;军规的精度在十米以下。2000年以后,
克林顿政府决定取消对民用讯号的干扰。因此,现在民用GPS也可以达到十米左右的定位精度。
GPS系统拥有如下多种优点:使用低频讯号,纵使天候不佳仍能保持相当的讯号穿透性;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。
GPS系统的组成
一个随着地球自转的GPS卫星星座例子。在此例子中,可接收到的卫星数量是以北纬45°
为基准,而此数量会随着时间而变动。
GPS系统主要由空间星座部分、地面监控部分和用户设备部分组成。
空间星座部分
GPS卫星星座由24颗卫星组成,其中21颗为工作卫星,3颗为备用卫星。24颗卫星均匀分布在6个轨道平面上,即每个轨道面上有4颗卫星。卫星轨道面相对于地球赤道面的轨道倾角为55°,各轨道平面的升交点的赤经相差60° ,一个轨道平面上的卫星比西边相邻轨道平面上的相应卫星升交角距超前30°。这种布局的目的是保证在全球任何地点、任何时刻至少可以观测到4颗卫星。
GPS卫星是由洛克菲尔国际公司空间部研制的,卫星重774kg,使用寿命为7年。卫星采用蜂窝结构,主体呈柱形,直径为1.5m。卫星两侧装有两块双叶对日定向太阳能电池帆板关于雨的谚语(BLOCK I),全长5.33m接受日光面积为7.2。对日定向系统控制两翼电池帆板旋转,使板面始终对准太阳,为卫星不断提供电力,并给三组15Ah镍镉电池充电,以保证卫星在地球阴影部分能正常工作。在星体底部装有12个单元的多波束定向天线,能发射张角大约为30度的两个L波段(19cm和24cm波)的信号。在星体的两端面上装有全向遥测遥控天线,用于与地面监控网的通信。此外卫星还装有姿态控制系统和轨道控制系统,以便使卫星保持在适当的高度和角度,准确对准卫星的可见地面。
由GPS系统的工作原理可知,星载时钟的精确度越高,其定位精度也越高。早期试验型卫星采用由霍普金斯大学研制的石英振荡器,相对频率稳定度为/秒。误差为14m。1974年以后,GPS卫星采用铷原子钟,相对频率稳定度达到/秒,误差8m。1977年,BOKCK II型采用了马斯频率和时间系统公司研制的铯原子钟后相对稳定频率达到/秒,误差则降为怎么删帖2.9m。1981年,休斯公司研制的相对稳定频率为/秒的氢原子钟使BLOCK IIR型卫星误差仅为1m。三八节寄语
地面监控部分
地面监控部分主要由1个主控站(Master Control Station ,简称MCS)、4个地面天线站(Ground Antenna)和6个监测站(Monitor Station)组成。
主控站位于美国科罗拉多州的谢里佛尔空军基地,是整个地面监控系统的管理中心和技术中心。另外还有一个位于马里兰州盖茨堡的备用主控站,在发生紧急情况时启用。
注入站目前有4个,分别位于南太平洋马绍尔岛的瓜加林环礁,大西洋上英国属地阿森松岛,英属印度洋领地的迪戈加西亚岛和位于美国本土科罗拉多州的科罗拉多斯普林斯。注入站的作用是把主控站计算得到的卫星星历、导航电文等信息注入到相应的卫星。
注入站同时也是监测站,另外还有位于夏威夷和卡纳维拉尔角2短暂的美丽歌词处监测站,故监测站目前有6个。监测站的主要作用是采集GPS卫星数据和当地的环境数据,然后发送给主控站。
用户设备部分
用户设备主要为GPS接收机,主要作用是从GPS卫星收到信号并利用传来的信息计算用户的三维位置及时间高速端午节免费吗
其他相关技术——
DGPS技术
为了使民用的精确度提升,科学界发展另一种技术,称为差分全球定位系统(Differential GPS),简称DGPS。亦即利用附近的已知参考坐标点(由其它测量方法所得),来修正 GPS 的误差。再把这个即时(real time)误差值加入本身坐标运算的考虑,便可获得更精确的值。
AGPS技术
AGPS(Assisted GPS:辅助全球卫星定位系统)是结合 GSM / GPRS 与传统卫星定位,利用基地台代送辅助卫星信息,藉以缩减 GPS 芯片获取卫星信号的延迟时间,受遮盖的室内也能藉基地台讯号弥补,减轻 GPS 芯片对卫星的依赖度。
北斗卫星导航系统(BeiDou(COMPASS)Navigation Satellite System简称BDS)是中国正在实施的自主发展、独立运行的全球卫星导航系统,致力于向全球用户提供高质量的定位、导航、授时服务,并能向有更高要求的授权用户提供进一步服务,[2]军用与民用目的兼具。中国在2003年完成了具有区域导航功能的北斗卫星导航试验系统,之后开始构建服
务全球的北斗卫星导航系统,于2012年起向亚太大部分地区正式提供服务,并计划至2020年完成全球系统的构建。
北斗卫星导航系统和美国全球定位系统、俄罗斯格洛纳斯系统及欧盟伽利略定位系统一起,是联合国卫星导航委员会东京大学排名已认定的供应商。
早期研究
1970年代,中国开始研究卫星导航系统的技术和方案,但之后这项名为“灯塔”的研究计划被取消。
1983年,中国航天专家陈芳允提出使用两颗静止轨道卫星实现区域性的导航功能,1989年,中国使用通信卫星进行试验,验证了其可行性,之后的北斗卫星导航试验系统即基于此方案。
试验系统
1994年,中国正式开始北斗卫星导航试验系统(北斗一号)的研制,并在2000年发射了两颗静止轨道卫星,区域性的导航功能得以实现。2003年又发射了一颗备份卫星,完成了北斗卫星导航试验系统的组建。
中国加入欧盟伽利略计划
2003年09月,中国打算加入欧盟的伽利略定位系统计划,并在接下来的几年中投入了2.3亿欧元的资金。由此,人们相信中国的北斗系统只会用于自己的武装力量。中国与欧盟在2004年10月09日正式签署伽利略计划技术合作协议。2008年01月,在“中国不当“伽利略”计划小伙伴”的报道中指出:中国不满其在伽利略计划中的配角地位,并将推出北斗二代与伽利略定位系统在亚洲市场竞争。
正式系统
2004年,中国启动了具有全球导航能力的北斗卫星导航系统的建设(北斗二号),并在2007年发射一颗中地球轨道卫星,进行了大量试验。2009年起,后续卫星持续发射,并在2011年开始对中国和周边地区提供测试服务, 2012年完成了对亚太大部分地区的覆盖并正式提供卫星导航服务。
中国为北斗卫星导航系统制定了“三步走”发展规划,从1994年开始发展的试验系统(第一代系统)为第一步,2004年开始发展的正式系统(第二代系统)又分为两个阶段,即第二步与第三步。至2012年,此战略的前两步已经完成。根据计划,北斗卫星导航系统将在2020年完成,届时将实现全球的卫星导航功能。
东盟各国加入合作
中国科学技术部部长万钢在2013年1月19日中国科技工作会议上透露,2013年将积极实施“中国东盟科技伙伴计划”,启动“中国-东盟联合实验室”、“中国-东盟技术转移中心”建设,在东盟各国合作建设北斗系统地面站网。
空间定位原理
在空间中若已经确定A、B、C三点的空间位置,且第四点D到上述三点的距离皆已知的情况下,即可以确定D的空间位置,原理如下:因为A点位置和AD间距离已知,可以推算出D点一定位于以A为圆心、AD为半径的圆球表面,按照此方法又可以得到以B、C为圆心的另两个圆球,即D点一定在这三个圆球的交汇点上,即三球交汇定位。北斗的试验系统和正式系统的定位都依靠此原理。
有源与无源定位
当卫星导航系统使用有源时间测距来定位时,用户终端通过导航卫星向地面控制中心发出一个申请定位的信号,之后地面控制中心发出测距信号,根据信号传输的时间得到用户与两颗卫星的距离。除了这些信息外,地面控制中心还有一个数据库,为地球表面各点至地球球心的距离,当认定用户也在此不均匀球面的表面时,三球交汇定位的条件已经全部满足,控制中心可以计算出用户的位置,并将信息发送到用户的终端。北斗的试验系统完全基于此技术,而之后的北斗卫星导航系统除了使用新的技术外,也保留了这项技术。
当卫星导航系统使用无源时间测距技术时,用户接收至少4颗导航卫星发出的信号,根据时间信息可获得距离信息,根据三球交汇的原理,用户终端自行可以自行计算其空间位置。此即为GPS所使用的技术,北斗卫星导航系统也使用了此技术来实现全球的卫星定位。
精度
参照三球交汇定位的原理,根据3颗卫星到用户终端的距离信息,根据三维的距离公式,就依靠列出3个方程得到用户终端的位置信息,即理论上使用3颗卫星就可达成无源定位,但由于卫星时钟和用户终端使用的时钟间一般会有误差,而电磁波以光速传播,微小的时间误差将会使得距离信息出现巨大失真,实际上应当认为时钟差距不是0而是一个未知数t,如此方程中就有4个未知数,即客户端的三位坐标(X,Y,Z),以及时钟差距t,故需要4颗卫星来列出4个关于距离的方程式,最后才能求得答案,即用户端所在的三维位置,根据此三维位置可以进一步换算为经纬度和海拔高度。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论