不同LED(LED-OLED-QLED-Micro LED)简介2017-02-09
一、 LED(发光二极管)
LED是半导体二极管的一种,可以把电能转化成光能。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。
常用的是发红光、绿光或黄光的二极管。发光二极管的反向击穿电压大于5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过二极管的电流。限流电阻R可用下式计算:
R=(E-UF)/IF  式中E为电源电压,UF为LED的正向压降,IF为LED的正常工作电流。
发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。
在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。
PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜的光线,光的强弱与电流有关。
二、 OLED(有机发光二极管)
有机发光二极管(Organic Light-Emitting Diode, UIV OLED)又称为有机电激光显示、有机发光半导体(Organic Electroluminesence
Display, UIV OLED)。与液晶显示(Liquid Crystal Display, LCD)是不同类型的发光原理。OLED由美籍华裔教授邓青云(Ching W. Tang)1983年在实验室中发现,由此展开了对OLED的研究。
OLED显示技术具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点。但是,在价格(较大显示面板)、寿命、分辨率暂无法与液晶显示器匹敌。
霍建华赵丽颖反目成仇有机发光二极管依彩可分为单、多彩及全彩等种类,其中全彩有机发光二极管的制备最为困难;依驱动方式可分为被动式(Passive Matrix, PMOLED)与主动式(Active Matrix, AMOLED)
三、 Q LED(量子点发光二极管)
量子点(Quantum Dots)是一些肉眼无法看到的、极其微小的半导体纳米晶体,是一种粒径不足10纳米的颗粒。通常说来,量子点是由锌、镉、硒和硫原子组合而成。1983年美国贝尔实验室的科学家首次对其进行了研究,但却“忘了”给它起名字,数年后耶鲁大学的物理学家马克·里德将这种半导体微块正式命名为“量子点”并沿用至今。
量子点有一个与众不同的特性:每当受到光或电的刺激,量子点便会发出有光线,光线的颜由量子点的组成材料和大小形状决定,这一特性使得量子点能够改变光源发出的光线颜。
麻省理工的毕业生于2005年创建QD Vision。联合创始人科尔·苏利文介绍,他的公司已经完全掌握了量子点的光可控技术,从工作原理上说,量子点与YAG荧光体类似,通过光线刺激让量子点发散出几种颜的组合,最终让LED灯发散出白的灯光。食品安全责任书
济南中考成绩什么时候出来2022
值得注意的是,量子点能够将LED光源发出的蓝光完全转化为白光,而不是像YAG荧光体那样只能吸收一部分,这意味着在同样的灯泡亮度下,量子点LED灯所需的蓝光更少,在电光转化中需要的电力自然更少,更高效的表现令其在节能减排方面更胜一筹。
LG Display和QD Vision两家公司在2010年11月表示,他们将共同开发有源矩阵利用量子点发光二极管(QLED)的纳米技术显示器,这种显示器更为明亮,彩更亮丽的同时可以消耗较少的能量。
根据双方的合作模式,QD Vision将提供技术,而LG将生产实际产品。
我做了一个小实验作文300字三年级由于技术的简化,量子LED显示屏采用了稳定可靠的无机半导体材料,这降低了生产成本。
预计这种显示器的颜纯度是现有产品的2倍,并且发光效率将提升30-40%。稳定可靠的无机半导体材料发光效率将提升30-40%
产品性能
1、量子点发光二极管产品能够进行商业化生产并能同有机发光显示屏(OLED)相竞争,制造OLED时,需要使用一个“阴罩”,当屏幕尺寸变大时,阴罩板容易发生热胀冷缩,会使得彩等不够精确。
2、QLED的制造过程不需要使用阴罩,因此不会出现精确度减少的问题。另外量子点还可悬停在液体中,并使用多种技术让其沉积,包括将其喷墨打印在非常薄的、柔性或者透明的衬底上。
3、OLED还有一处不足其纯需用彩过滤器才能产生,而QLED从一开始就能产生各种不同纯,也在将电子转化为光子方面优于OLED,因此能效更高,制造成本更低。
4、在同等画质下,QLED的节能性有望达到OLED屏的2倍,发光率将提升30%至40%。同时QLED可以达到与无机半导体材料一样的稳定性、可靠性。
四、 Micro LED(微发光二极管)
LED技术发展了接近三十年,从最初的固态照明电源到显示领域的背光再到LED显示屏,LED的自发光、小尺寸、高亮度、长寿命、低功耗、快响应都为LED 的更广泛应用提供坚实的基础。但是发展到如今LED显示屏的像素尺寸都很大,图像显示的细腻程度差强人意。随着技术的不断发展,新型的显示技术MicroLED 应运而生。
微发光二极管也被称为MicroLED,通过在一个芯片上集成高密度微小尺寸的LED阵列来实现LED的薄膜化、微小化和矩阵化,其像素点距离从毫米级降低至微米级别,体积是目前主流LED大小的1%,每一个像素都能定址、单独发光。并且具备功耗低(耗电量仅为LCD的十分之一)、亮度高、具备超高解析度和彩饱和度(接近OLED且没有衰缺点),并且响应速度更快,寿命更长、效率更高的优势。
如今包括苹果、索尼在内很多厂商把MicroLED看做是下一代的显示技术,并不断加强研发。业内夏普、京东方、华星光电、友达、创等厂商也跃跃欲试并参与到其中,力图参与到下一代显示技术的版图中。Sony在2016年6月推出MicroLED新产品,引发了业内对于MicroLED的讨论热潮,实际上目前的MicroLED 只能算是户外LED小间距屏幕的缩小版,其底层是通用的CMOS集成电路制成的LED驱动电路,再通过MOCVD在集成电路上制作LED阵列。诸多的优点使得如今业内纷纷认为MicroLED是继传统LCD、OLED后的新一代显示技术。虽然目前MicroLED的量产依旧存在着很多问题,但是随着业内技术的不断突破相信这项技术会在3年后逐渐走近我们的生活。
原理: Micro LED Display的显示原理,是将LED结构设计进行薄膜化、微小化、阵列化,其尺寸仅在1~10μm等级左右;后将MicroLED批量式转移至电路基板上,其基板可为硬性、软性之透明、不透明基板上;再利用物理沉积制
程完成保护层与上电极,即可进行上基板的封装,完成一结构简单的
Micro LED显示。
而要制成显示器,其晶片表面必须制作成如同LED显示器般之阵列结构,
且每一个点画素必须可定址控制、单独驱动点亮。若透过互补式金属氧化物半
导体电路驱动则为主动定址驱动架构,Micro LED阵列晶片与CMOS间可透过封装技术。黏贴完成后Micro LED能藉由整合微透镜阵列,提高亮度及对比度。Micro LED阵列经由垂直交错的正、负栅状电极连结每一颗Micro LED的正、
负极,透过电极线的依序通电,透过扫描方式点亮Micro LED以显示影像。
Micro LED结构图
Micro LED典型结构是一PN接面二极管,由直接能隙半导体材料构成。当对MicroLED上下电极施加一正向偏压,致使电流通过时,电子、空穴对于主动区复合,发射出单一光。Micro LED光谱主波长的FWHM约20nm,可提供极高的饱和度,通常可>;120%NTSC。
而且自2008年以后,LED光电转换效率得到了大幅提高,100 lm/W以上已成量产标准。因此对于Micro LED显示的应用,因其自发光的显示特性,搭配几乎无光耗元件的简易结构,就可轻易实现低能耗或高亮度的显示器设计。
这样可以可解决目前显示器应用的两大问题,一是穿戴型装置、手机、平板等设备的80%以上的能耗在于显示器上,低能耗的显示器技术可提供更长的电池续航力;一是环境光较强致使显示器上的影像泛白、辨识度变差的问题,高亮度的显示技术可使其应用的范畴更加宽广。
制程种类及技术发展
对于半导体与芯片的制程微缩目前已到极限,而在制造上的微缩却还存在相当大的成长空间,对于Micro LED制程上,目前主要呈现分为三大种类:Chip bonding(芯片级焊接)、Wafer bonding(外延级焊接)和Thin film transfer(薄膜转移)。
三大制程的各自优劣势及厂商
奢华汽车
Chip bonding(芯片级焊接):是将LED直接进行切割成微米等级的Micro LED chip(含磊晶薄膜和基板),利用SMT技术或COB技术,将微米等级的Micro LED chip一颗一颗键接于显示基板上。送给家人的中秋暖心话
Wafer bonding(外延级焊接):是在LED的磊晶薄膜层上用感应耦合等离子离子蚀刻(ICP),直接形成微米等级的Micro LED磊晶薄膜结构,此结构之固定间距即为显示画素所需的间距,再将LED晶圆(含磊晶层和基板)直接键接于驱动电路基板上,最后使用物理或化学机制剥离基板,仅剩4~5μm的Micro LED磊晶薄膜结构于驱动电路基板上形成显示画素。
Thin film transfer(薄膜转移):是使用物理或化学机制剥离LED基板,以一暂时基板承载LED磊晶薄膜层,再利用感应耦合等离子离子蚀刻,形成微米等级的Micro LED磊晶薄膜结构;或者,先利用感应耦合等离子离子蚀刻,形成微米等级的Micro LED磊晶薄膜结构,再使用物理或化学机制剥离LED基板,以一暂时基板承载LED磊晶薄膜结构。最后,根据驱动电路基板上所需的显示画素点间距,利用具有选择性的转移治具,将Micro LED磊晶薄膜结构进行批量转移,键接于驱动电路基板上形成显示画素。
总结
尽管Micro LED显示已经备受企业关注和加大研发,在规格上也较LCD具有多重好处,甚至画质上可与OLED相媲美,但是现阶段该显示器发展并未普及,主要困难点有三,
第一、在于LED固晶上;以目前已成熟的LED灯条制程为例,在制作一LED灯条尚有坏点等失败问题发生,何况是一片显示器上要嵌入数百万颗微型LED。而LCD与OLED已采批次作业,良率表现相对较佳。
第二、LED组件上;覆晶LED适合于Micro LED显示,因其体积小、易制作成微型化,不需金属导线、可缩减LED彼此间的间隙等,虽然Flip Chip目前的良率还有一定问题,但是随着LED的技术的逐渐完善和资本的不断注入,已经在稳步提升。
第三、规模化转移上;未来Micro LED显示困难处在于嵌入LED制程不易采大批量的作业方式,尤其是RGB的3LED较单难度更高。但是未来随着LED黏着、印刷等技术方法的提升,则有利于Micro LED显示导入量产化阶段。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。