第五章腔肠动物(精品教案)
第五章腔肠动物Coelenterata
目的与要求
掌握腔肠动物门的主要特征,了解两胚层、原始消化腔及神经网出现的生物学意义;以水螅为代表,掌握腔肠动物的形态、结构与机能特点;了解腔肠动物门的系统分类及演化;了解腔肠动物出现的意义。
重点与难点
腔肠动物门的主要特征,两胚层、原始消化腔及神经网出现的生物学意义;水螅形态、结构与机能特点;腔肠动物门的系统分类及演化。
方法与手段
多媒体、讲授与讨论、实验
第一节腔肠动物的主要特征
腔肠动物身体是由两层细胞构成的多细胞动物,但在结构、生理及进化水平上超过了海绵动物,是真正后生动物的开始,它们在动物进化过程中占有重要地位,所有后生动物都是要经过这个阶段发展起来的。
制作礼品盒腔肠动物为辐射对称,具两胚层,有组织分化,原始的消化腔及原始神经系统的低等后生动物(metazoa)。这些特征是海绵动物还没有发生,而为其他多细胞动物所共有的基本特征。
一、辐射对称
多孔动物的体型多数是不对称的。从腔肠动物开始,体型有了固定的对称形式。本门动物一般为辐射对称(radial symmetry)。即大多数腔肠动物,通过其体内的中央轴(从口面到反口面)有许多个切面可以把身体分为2个相等的部分。这是一种原始的低级的对称形式。这种对称只有上、下之分,没有前后左右之分,只适应于在水中营固着的或漂浮的生活。利用其辐射对称的器官从周围环境中摄取食物或感受刺激。在腔肠动物中有些种类已由辐射对称发展为两辐射对称(biradial symmetry),即通过身体的中央轴,只有两个切面可以把身体分为相等的两部分。这是介于辐射对称和两侧对称的一种中间形式。
腔肠动物身体有了固定的对称体制,身体或为水螅型(hydroidtype),或为水母型(medusatype),或两者兼有,或交替出现,这种体制是与其在水中营固着生活或漂浮生活的生活方式相关。腔肠动物则是最原始的真后生动物(Eumetazoa)。是其他高等多细胞动物的一个起点。
腔肠动物的两种体型随不同的类而有不同的存在方式。在水螅纲,原始的种类水螅型与水母型交替出现在生活史中,无性生殖阶段表现为水螅型,有性生殖阶段表现为水母型,大多数水螅纲其水螅型王者荣耀段位
比较发达,特别是体生活的种类。在钵水母类水母型发达,水螅型不发达或完全消失。珊瑚虫类只有水螅型体型、水母型已不复存在了。水螅型呈单体例如水螅(Hydra),体生活的种类例如薮枝螅(Obelia)。水螅类的消化循环腔为一简单的空腔,呈管状,而珊瑚类的消化循环腔复杂,被体壁向心伸出的许多隔膜分隔成许多间隔,以增大消化及吸收的面积。
水母型通常是单体、营漂浮或游泳生活,极少数种是体,有的体可营固着生活。水母型身体呈铃形或倒置的碗形,或伞形,向外凸出的一面称外伞面(exumbrella)或上伞面,凹入的一面称下伞面(subumbrella),下伞面的中央有一下垂的管称垂唇(manubrium),垂唇的游离端为口,伞的边缘有一圈触手。
二、两胚层、原始消化腔
肉松怎么做在动物的进化历程中,腔肠动物第一次出现了胚层的分化。构成腔肠动物体壁的两层细胞,分别来源于胚胎时期的外胚层与内胚层。在二胚层之间有由内、外胚层细胞分泌的中胶层。由内外胚层细胞所围成的体内的腔,即胚胎发育中的原肠腔。它具有消化的功能,可以
行细胞外及细胞内消化。因此,可以说从这类动物开始有了消化腔。这种消化腔又兼有循环的作用,它能将消化后的营养物质输送到身体各部分,所以又称为消化循环腔(gastrovascular cavity)。有口,没有肛门,消化后的残渣仍由口排出。它的口有摄食和排遗的功能。口即为胚胎发育时的原口,
与高等动物比较,可以说腔肠动物相当于处在原肠胚阶段。所以腔肠动物最先出现了细胞外的消化过程,同时也进行着细胞内的消化过程,这是动物向高等发展的重要步骤。对动物的更有效地取食与消化,提高新陈代谢的能力具有重要的意义。所以腔肠动物体壁包围的消化腔具有重要的生理机能,
三、组织分化
海绵动物主要是有细胞分化。腔肠动物是真正的二胚层动物,外胚层发育成成体的表皮层(epidermis),具有保护、运动及感光等机能;内胚层发育成成体的胃层(gastrodermis),具有消化、生殖等功能。腔肠动物两个胚层的机能分化,与高等的多细胞动物的外胚层与内胚层的机能分化是相同的。
腔肠动物不仅有细胞分化,而且开始分化出简单的组织。腔肠动物上皮组织占优势,由它形成体内、外表面并分化为感觉细胞、消化细胞等。它的特点是在上皮细胞内包含有肌原纤维。这种细胞具有上皮和肌肉的功能,所以称为上皮肌肉细胞(epithelio-muscular cell)简称皮肌细胞。同时腔肠动物的上皮还具有像神经一样的传导功能,这是近些年来应用电生理学技术和电子显微镜检来研究腔肠动物神经的一个发现。非神经的传导(non-nervous conduction)或类神经(neuroid)传导,首先是在腔肠动物得到证实的。又如神经组织是由单极神经细胞、双极神经细胞及多极神经细胞构成的一种神经网,它们的神经传导总体上说是不定向的,因为没有神经中枢;又呈网状分布,神经细胞也与感觉细胞及效应细胞相联,构成了对外界刺激的传导与反应。
四、肌肉的结构(musculature)与运动
上皮肌肉细胞既属于上皮,也属于肌肉的范围。这表明上皮与肌肉没有分开,是一种原始的现象。一般在上皮肌肉细胞的基部延伸出一个或几个细长的突起,其中有肌原纤维(myofbrils),也有的上皮成分不发达,成为肌细胞(myocyte),有的是上皮成分发达,细胞呈扁平状,肌原纤维呈单向排列,或者是2排肌原纤维呈垂直排列,也有的上皮成分发达呈圆柱状,周围有一系列的平滑肌环。肌纤维也分为横纹肌、斜纹肌和平滑肌。每个肌原纤维都是由一束细丝组织成,这些丝又分粗、细2种,与高等动物粗(肌球蛋白)、细(肌动蛋白)丝相似,其收缩机理也和高等动物的相似。关于肌肉的神经支配了解的不多,近年来有的实验证明,腔肠动物的神经与肌肉的接触都分——神经肌肉突触(neuromuscular synapses)的超微结构和神经肌肉连接(neuromuscular junction),也都与高等动物的相似。
腔肠动物很少能做主动的移位运动,运动的能力是很有限的,特别是水螅型。运动是由表皮肌肉细胞中肌原纤维的收缩所引起。例如水螅的身体可做伸缩运动,伸展时体长可达15—20mm,收缩时体长仅0.5mm,这种伸缩是爆发式的,每5—10分钟左右爆发一次,主要是由外皮肌细胞的纵行肌原纤维的收缩所引起。身体一侧的肌原纤维的收缩可引起身体的弯曲。有时靠弯曲身体及触手并与基盘的交替附着而做翻斛斗式的运动。基盘处粘细胞可分泌大量的气泡,可使水螅在水面上做短暂的漂浮。钵水母类和珊瑚类的肌原纤维已与表皮细胞分离形成独立的一层肌纤维,例如水母的肌原纤维在下伞面
及伞缘形成薄薄的一层肌肉环,有的被辐管分离成片状,其纤维有横纹,它们做有规律的收缩,使伞面有节奏的收缩运动。当伞缘收缩时,伞缘内的水被喷出,由于反作用力而推动水母体向上运动,当伞及伞缘肌肉舒张,被压缩的中胶层的弹性,使伞又恢复了原形,水又重新进入伞缘内,身体下沉,但由于收缩比舒张要快,所以水母还是可以向上垂直运动。水母类的垂直运动在有缘膜的水母可以看的更为清楚。一旦肌肉停止收缩,水母就会自然下沉。其水平方向的运动多是被动的,多是由于水流及风力所推动。又例如在珊瑚类,海葵的肌原纤维在隔膜上形成发达的牵
缩肌,它的收缩非常有力,所以当海葵固着在岩石上是很难将它取下的。
五、原始的神经系统---神经网(nerve net)
动物界里最简单最原始的神经系统。一般认为它基本上是由二极和多极的神经细胞组成。这些细胞具有形态上相似的突起相互连接形成一个疏松的网,因此称神经网。有些种类只有一个神经网,存在于外胚层的基部;有些种类有2个神经网,分别存在于内、外胚层的基部;还有些除了内外胚层的神经网外,在中胶层中也有神经网。神经细胞之间的连接,经电子显微镜证明,一般是以突触相连接,也有非突触的连接。这些神经细胞又与内、外胚层的感觉细胞、皮肌细胞等相连系。感觉细胞接受刺激,通过神经细胞传导,皮肌细胞的肌纤维收缩产生动作,这种结合形成神经肌肉体系(neuro-muscular system)。这样对外界刺激(光、热、化学的、机械的、食物等)产生有效的反应,如捕食
、避敌以及协调整体的活动等。但腔肠动物没有神经中枢,神经的传导一般是无定向的,因此称为扩散神经系统(diffuse nervous system)。同时,神经的传导速度也较慢,它比人的神经传导速度约慢1000倍以上,这都说明这种神经系统的原始性。
近年来对腔肠动物神经突起的超微结构的研究,看到神经连接的突触,在形态上有极化现象,就是只在神经交接的一个突起上有泡,而另一个没有。在没有极化的突触上,2个突起都有泡。这种形态上的极化可能是传导系统中极化传导的基础。
腔肠动物的神经元可以有2个、3个或多个长的神经突起,这些突起或与感官相联、或与效应器相联、或与其他神经元相联、或者是同一个神经元同时与感官与效应器相联,这种多样性说明了神经细胞传导的原始性。在生理意义上代表了高等动物所具有的感觉神经、运动神经及中枢神经的起始阶段。此外,腔肠动物的非神经传导,即上皮传导也是很常见的,例如刺细胞、表皮肌肉细胞可以完全独立于神经元而被自身所控制。
水母型的神经结构比水螅型复杂,例如水螅水母,除了伞部的神经网之外,伞缘的上皮神经细胞分别在伞缘的上、下面集中形成两个神经环。下面(或称外面)的一个神经环更发达。钵水母类的水母型多数没有这种神经环,而是在伞缘集中形成4—8个神经节。
四级及格水母型个体均能表现出一种有节奏的收缩运动,这是由于水母的神经结构每隔一定时间能自发地产生
星际之狼动作电位,并经过神经传导引起整个身体的收缩。研究已经证明这种自发的动作电位是由起博点的神经元所引起。起博点神经元在水螅水母存在于外神经环中,在钵水母类存在于感官神经节中。而且每一个神经节(一般4—8个)都有起博神经元,它是水母类有节奏博动的中心。一个水母体似乎有一个起博点就足以引起身体有节奏的收缩运动,但实验证明多个起博点比仅有一个起博点能使收缩的节奏更有规律、更有保障、使间隔的时间也较短。腔肠动物的水螅型体没有明显的感官,其感觉细胞可分布全身,但触手、口区较为丰富。水母型个体,在伞缘具有丰富的感觉细胞或感觉器官。感觉细胞的细胞体都是具纤毛的。感觉器官包括眼点及平衡囊。眼点是由感觉细胞构成的杯状物,内有素颗粒分布,它对光线或有正趋性,即有光时游向水面。或对光有负趋性,即有光时下沉水底,无光或弱光时浮向水面。平衡囊在水螅水母结构简单,在缘膜基部或下伞面神经环(即外神经环)处形成一个小囊,囊的内壁有感觉细胞,细胞上也有纤毛。囊的底部有一钙质结石。它是一种重力感受器。当伞缘倾斜时,结石与感觉细胞的纤毛接触,并刺激纤毛细胞以产生动作电位,抑制了该侧肌肉纤维的收缩,通过肌肉收缩再调整身体使恢复平衡位置。钵水母类的平衡囊结构更复杂,将在有关节中叙述。
第二节腔肠动物门的代表——水螅(Hydra)
一、生活环境与形态
水螅生活在淡水中,在水流较缓水草丰富的清水中常可采到。水媳分布较广、容易采集和培养,且便于观察其结构,因此常用作实验材料。
水螅体为圆柱状,能伸缩,遇到刺激时可将身体缩成一团。一端附于水草或其他物体上,
附着端称为基盘(basal or pedal disk)。另一端有口,口长在圆锥形的突起——垂唇(hypostome)上,平常口关闭呈星形,当摄食时口张开,在口之周围,有细长的触手(tentacle),一般6~10条,呈辐射排列,主要为捕食器官。
触手是腔肠动物重要的结构之一,某些水螅型与水母型完全缺乏触手。触手基本上可分为两种形态:一种是头状的,短小,刺细胞集中在触手端部,组成帽状结构;一种是丝状的,细长,刺细胞沿触手全长呈环状或瘤状分布,这两种触手或单独存在于不同的种,或同时存在。
触手的数目、结构、排列方式在不同的种不同,触手或由于胃腔的伸入而中空,或由胃腔细胞充满而呈实心结构。触手的数目也常随动物年龄的增加而增加,触手的基部也常膨大,是感觉细胞或刺细胞集中的结果。当水螅饥饿时,触手伸得很长。如狩猎一样,捕到食物后由触手缩回来送到口中。也可借助于触手和身体弯曲作尺蠖样运动或翻筋斗运动。
二、体壁
水螅的身体内部为一空腔,由口与外界相通,也与角手相通,此为消化循环腔。其体壁由两层细胞构成,在2层细胞之间为中胶层。体表的一层为外胚层,这层细胞主要有保护和感觉的功能,里面的一层为内胚层,主要有营养功能。
1.外胚层
包括皮肌细胞(称上皮肌细胞或外皮肌细胞)、腺细胞、感觉细胞、神经细胞、刺细胞和间细胞。
上皮肌肉细胞(epitheliomuscular cell)是构成表皮层与胃层上皮组织的最主要的一种细胞。一般呈柱形,基部固着在中胶层上。外胚层的上皮肌肉细胞基部延伸,其延伸部分平行于身体的主轴,在延伸物中包含有肌原纤维(myoneme),许多细胞的延伸物彼此相连,依次排列形成纵行于身体的可伸缩的肌肉层,肌肉的收缩可以使身体缩短,因此腔肠动物的上皮细胞具有肌肉细胞的特性,这是一种原始分化的现象。在一些珊瑚虫类,其肌原纤维不是独立于上皮细胞,而是埋于中胶层中,形成独立的肌肉束。水母型的上皮细胞多为立方形或扁平形。
腺细胞(glandcell)是一种具分泌能力的上皮细胞。在水螅的基盘处及触手的表皮层中腺细胞特别发达,它的分泌物可以帮助水螅体附着及捕食等。在具有骨骼的种类,例如水螅型体及珊瑚类,其腺细胞可以分泌大量的角质或钙质以形成几丁质的围鞘或钙质外骨骼。胃层中也含有大量的腺细胞,细胞内含有大量的分泌颗粒,它可以转化成消化酶,进行食物的细胞外消化。
间细胞(interstitialcell)位于上皮细胞之间,靠近中胶层处,是一些小型、圆形的细胞,单独或成堆分布,具大的细胞核,它是体内一种未分化的细胞,由它可以转化成生殖细胞、刺细胞、腺细胞等其他类型的细胞。
刺细胞(cnidoblast)是腔肠动物特有的一种攻击及防卫性细胞。在水螅类分布于表皮层中,特别是在口区、触手等部位,在钵水母及珊瑚类除了分布于体表及触手外,消化腔的胃丝、隔膜丝上也有大量的分布以帮助捕食。刺细胞是一种特化了的上皮肌肉细胞,核位于基部,细胞顶端具一个刺针(cnidocil),伸出体表,其超微结构相似于鞭毛;刺的基部也有基粒。刺细胞内有一刺丝囊(nematocyst),囊的顶端为一盖板(lid),囊内为细长盘卷的刺丝。当刺针或刺细胞受到刺激时,刺丝囊由刺细胞中被排出,同时刺丝也由刺丝囊外翻出来,形成不同长度的刺丝,用以捕食及防卫。实验证明刺丝囊的排放机制是由机械刺激及化学刺激的联合作用所引起,单独地使用其中任何一种刺激并不引起排放。外界刺激作用于刺细胞,引起刺丝囊由周围细胞质中吸收水分,改变囊壁渗透性,刺细胞随之收缩,增加了刺丝囊内的压力,刺丝冲破盖板外翻出来而引起了排放。所以其排放是由于外界刺激直接作用于刺丝囊,而不是通过神经细胞。神经的传导作用可能仅在大量的刺细胞的排放中起调节作用。
已排放的刺丝囊其尖端不断地渗出液体,这种液体对被捕物具有麻醉及毒杀作用。有人用一种海葵Aiptasia,从其消化道内胃丝上收集大量的刺丝囊毒液进行分析,结果发现其中有四种蛋白质成分。再用这四种蛋白质成分对招潮蟹(Uca)及喇咕虾(Procambarus)做毒性实验,结果发现其中有的蛋白质成分有毒杀作用,有的蛋白质有破坏细胞膜及神经索传递动作电位的能力,有的蛋白质成分引起实验动物的强烈痉挛,这说明是通过神经系统的作用所引起。实验结果说明由胃丝上收集的这些蛋
白质具有神经毒素、肌肉毒素、溶血性及坏死性的特征。有的腔肠动物其刺丝囊的毒素甚至对人也造成麻痺作用,例如大海蜇、霞水母等。每个刺细胞仅能排放一次,但可以由间细胞不断地补充及更新,根据其排放出的刺丝囊及刺丝的形态、腔肠动物的刺丝囊有30多种,但每种动物一般有l—7种不等。例如水螅有四种,一种是穿刺刺丝囊(penetrant),用以穿刺并释放毒液;一种是缠绕刺丝囊(volvent),这种不释放毒液、但能缠绕捕获物;还有两种是粘着刺丝囊(glutinant),它们所排出的刺丝具有粘着及捕食功能。前两种刺丝囊对化学刺激,特别是对食物刺激比较敏感,后两种对机械刺激敏感。有人观察水螅在一次捕食时可以排放出触手上25%的刺丝囊,并在48小时内更新。
神经细胞(nerve cell)腔肠动物的神经细胞主要为多极神经细胞,也还有双极神经细胞等。细胞体位于上皮肌肉细胞基部,靠近中胶层,平行于体表排列。神经细胞相互分离分布,靠神经纤维相联,形成网状,故名网状神经。
感觉细胞(sensory cell)细胞体长形,垂直于体表,在口区及触手处很丰富,细胞基部具有很多神经突起,端部具感觉毛,感受各种刺激,然后经神经突起作用于效应器或细胞。腔肠动物的表皮层与胃层之间为中胶层(mesoglea),水螅型体内的中胶层不发达,一般为很薄的一层,其中很少有细胞分布。水母型体内中胶层十分发达,占据了身体的几乎整个厚度,其中含有纤维及少量来源于外胚层的细胞。中胶层中的主要成分是水分,其中含有极少量的蛋白质及多糖,其浓度一股低于1%,其渗透浓度比海水还低,但由于其中含有少量的硫酸盐和其他离子(硫酸钙溶液比等渗的氯化钙溶液更浓),
所以它的总渗透浓度和海水相近。一般情况中胶层中含有机物为5%,也有人用细指海葵(Metridium)做实验,发现其中胶层中含有8%的蛋白质和1%的多糖,并以胶原蛋白质的形式存在,这种物质具有很强的弹性和粘合力。脊椎动物肌腱中的胶原纤维只能延伸到自身长度的10—20%,腔肠动物中胶层中的胶原纤维却能伸长自身长度的三倍(橡胶是四倍)。所以中胶层不仅使腔肠动物可以伸缩及保持体形,在一定意义上也是腔肠动物的一种骨骼类型。火字旁的字有哪些字
2.中胶层
薄而透明,为内外胚层细胞分泌的胶状物质,在身体和触手都是连续的。在电了显微镜下中胶层中有很多小纤维,皮肌细胞突起也伸入其中。中胶层像是有弹性的骨骼,对身体起支持作用。
3.内胚层
包括内皮肌细胞、腺细胞和少数感觉细胞与间细胞。在内胚层细胞的基部也有分散的神经细胞,但未连接成网。内皮肌细胞或称营养肌肉细胞(nutritivemuscular cell),是一种具营养机能兼收缩机能的细胞,在细胞之顶端通常有2条鞭毛(H一5条),由于鞭毛的摆动能激动水流,同时也可伸出伪足吞食食物,细胞内常常有不少食物泡,其基都的肌原纤维,沿着体轴或触手之中心呈环形排列,收缩时可以使身体或触于变细。在口周围,皮肌细胞的肌原纤维还有括约肌的作用。腺细胞在内皮肌细胞之间,分散于内胚层各部分。腺细胞所处的部位不同,其功能也不一样,如在垂唇部分的可分泌粘液,在滑
润作用,使食物容易被吞进去;在消化循环腔内的则能分泌消化酶消化食物。
三、消化循环腔
水螅以各种小甲壳动物(如蚤类、剑水蚤等)、小昆虫幼虫和小环节动物等为食。以触

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。