中考数学试题试卷分析及教学建议
中考数学试题试卷分析及教学建议
  中考的性质定位在对初中学业的终结性评价,体现了以《数学课程标准》为依据,结合课本,突出学习目标的考查;初中学业考试数学卷切实做到了有利于实施素质教育,有利于初中数学教学改革和二期课改的顺利推进,有利于减轻学生过重的课业负担,有利于各类高级中学的招生选拔,对新初三学生的学习具有极强的导向作用。
一、数学试题特点
  1.立足课本,注重考查“双基”
  基础知识、基本技能是学生继续学习和进一步发展的基石,近几年的数学中考试题,大部分来源于课本,特别是基础题,往往是把课本例题、习题改变知识的呈现方式,进行适当地调换和引申,并为保证考试的合格率,大部分基础题目比课本上的原题还要简单。试题覆盖到七、八、九三个学年的每一章,考查的代数知识与几何知识的分值比始终控制在6:4左右。试题体现几何论证的适度性,几何证明题的难度逐年降低。试题的运算量得到严格控制,没有一些繁琐的计算题。 
  2.把握重点,突现思想方法 
圆的周长怎么算
  重点知识是支撑学科知识体系的主要内容,近几年的数学中考试卷中都保持了较高的考查比例,突出对一元二次方程、函数、统计初步、相似形、锐角三角比、圆这六大块内容的重点考查,每年这六大块内容的分值都在整卷分值的三分之二左右;最后两个综合题考查的知识点也集中在函数、相似形、圆等重点知识上。数学思想方法是数学知识在更高层次上的抽象和概括,在重点考查最基本、通用的数学规律和数学技能的同时,试题突出考查学生对数学思想方法的领悟,三年中考试题涵盖了初中阶段所涉及如字母表示数的思想、方程思想、变量及函数思想、数形结合思想、分类讨论思想、图形运动思想、化归思想、整体代换思想、分解组合等主要数学思想,常用的数学方法如换元法、配方法、待定系数法等在试题中也得到充分的体现。 新闻学排名
  3.联系实际,强化应用意识
  数学来自于生活。近年来,随着对“用数学”的强调,联系生活实际的应用题成为中考的一个新的特点。在近几年的试题中,结合社会热点、结合生产、生活实际等有实际背景和意义的问题频繁出现,要求用数学的眼光观察世界,突出了用数学知识、数学思想方法去分
析问题、解决问题能力的考查,这类试题往往情景较为新颖,问题也较为灵活,每年的分值在25分左右。 
满月酒答谢词  4.关注思维、加强能力考查 
  三年来,数学中考试卷加强了对探究能力、获取信息和处理信息能力、空间观念操作能力和综合运用数学知识解决问题能力的考查力度,加强对学生数学思维过程和思维方法的考查;如有关图形运动变换试题,重点对空间观念和动态图形处理能力的考查,从对静态图形的想象、简单动态图形的想象、复杂动态图形的想象等几个不同层次对能力作恰当要求,重视图形的旋转、平移、翻折三种基本形式,体现教材的特;在信息获取能力的考查上,试题注意对从数学图形、图象、文字、表格等多种信息源中,获取有用的信息,通过阅读,正确理解各种形式的数学语言的含意,分析问题转化的条件,概括发现规律,选择恰当的方法处理问题;另外,近年来引进了探索性、开放性、操作性问题,这类试题较为灵活,但难度不一定很大,有的在对传统题目的改变后难度大大降低。 
二、对初梁山好汉绰号数学教学几点启示
父亲节快乐图片最新图片  1.重视课本、打好扎实基础
西双版纳著名景点
   初三大多数时间还要上新课,知识占中考试题的三分之一以上,且大部分综合题是以这些知识点为主要内容,所以,要认真上好新课,在学习新知识的同时,要及时复习相关的知识,学会重新构建知识结构网络,还要做到及时解决疑难问题,减轻总复习的压力。中考数学具体考什么内容我们很难确定,但试题中考查的基础知识、基本技能与重要的数学思想方法等,即数学的核心内容是可以确定的,所以抓住最基础、最核心内容的复习。例如,代数中重点内容有方程、函数、统计初步三个主干知识;几何中重点内容有相似三角形、锐角三角比、圆三个主干知识;在数学基础知识的复习过程中,要善于将自己在初中所学的知识进行归类,理清初中阶段数学知识网络,形成完整的知识体系。要学会系统地整理基础知识和基本方法,优化知识结构,基础知识的梳理,把握主干知识之间的联系。要注意知识的不断深化,注意知识之间的内在联系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出解题途径优化解题过程。要做到:基础知识系统化、基本方法类型化、解题过程规范化。
  2.学会反思、发展能力 
  在学好概念、定理、法则的同时,要领会其中的数学思想方法,如学习统计时,不是单纯地计算平均数、方差、标准差,而是更加注意与生活实际的联系,加重视统计的思想方法和意义,养成解题后的反思,通过不断的积累,逐渐内化为自己的经验,形成解决问题的自觉意识。要关注数学在实际中的应用,知道一些生活中的概念,还需注意生活常识的积累。解题时并不是单纯地靠题型,而需将重点放在分析上,会将实际问题抽象转化为数学问题,寻解决问题的突破口,提高数解决实际问题的能力。要善于对数学思想和数学方法进行归纳、整理和总结,它们往往蕴含在数学知识的发生、发展和应用的全过程中。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。