高一物理万有引力与航天知识点归纳
高一物理万有引力与航天知识点归纳
在学习中,很多人都经常追着老师们要知识点吧,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。为了帮助大家更高效的学习,以下是店铺收集整理的高一物理万有引力与航天知识点归纳,仅供参考,欢迎大家阅读。
高一物理万有引力与航天知识点归纳 1
一、知识点
(一)行星的运动
1、地心说、日心说:内容区别、正误判断
2、开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围
(二)万有引力定律
1、万有引力定律:内容、表达式、适用范围
2、万有引力定律的科学成就
(1)计算中心天体质量
2019高考分数线预测(2)发现未知天体(海王星、冥王星)
(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)
(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)
二、重点考察内容、要求及方式
1、地心说、日心说:了解内容及其区别,能够判断其科学性(选择)
2、开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)
3、万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)
4、计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)
5、宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)
6、计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)
7、经典力学的局限性:了解其局限性所在,适用范围(选择)
高一物理万有引力与航天知识点归纳 2
一、开普勒行星运动定律
(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,
(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,
(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律
1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、
2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、
三、万有引力定律的应用
1、解决天体(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,
gR2=GM.
2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.
(1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、
3、人造卫星
(1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、
(2)卫星的线速度、角速度、周期与半径的关系
①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、
②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、
③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、
②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、
③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v
≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、
专利法实施细则题型:
1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.
2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.
3、近地卫星与同步卫星
(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、
(2)地球同步卫星的五个“一定”
情人节文案短句①周期一定T=24 h
②距离地球表面的高度(h)一定
③线速度(v)一定
④角速度(ω)一定
⑤向心加速度(a)一定
高一物理万有引力与航天知识点归纳 3
定义:
万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等邮件备份
于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:
若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:
ω=2π/T(周期)
存的部首学生困难补助申请书如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为
mrω^2=mr(4π^2)/T^2
另外,由开普勒第三定律可得
r^3/T^2=常数k'
那么沿太阳方向的力为
mr(4π^2)/T^2=mk'(4π^2)/r^2
由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,
(太阳的质量M)(k'')(4π^2)/r^2
是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量M,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。
如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为
万有引力=GmM/r^2
两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引
力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体_地球上,它使月球和人造地球卫星绕地球旋转而不离去。
重力,就是由于地面附近的物体受到地球的万有引力而产生的。
任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称4种基本相互作用。引力是其中最弱的一种,两个质子间的万有引力只有它们间的电磁力的1/1035,质子受地球的引力也只有它在一个不强的电场1000伏/米的电磁力的1/1010。因此研究粒子间的作用或粒子在电子显微镜和加速器中运动时,都不考虑万有引力。一般物体之间的引力也是很小的,例如两个直径为1米的铁球,紧靠在一起时,引力也只有1.14×10^(-3)牛顿,相当于0.03克的一小滴水的重量。但地球的质量很大,这两个铁球分别受到4×104牛顿的地球引力。所以研究物体在地球引力场中的运动时,通常都不考虑周围其他物体的引力。天体如太阳和地球的质量都很大,乘积就更大,巨大的引力就能使庞然大物绕太阳转动。引力就成了支配天体运动的的一种力。恒星的形成,在高温状态下不
弥散反而逐渐收缩,最后坍缩为白矮星、中子星和黑洞,也都是由于引力的作用,因此引力也是促使天体演化的重要因素。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论