(完整版)高中物理天体运动多星问题
双星模型三星模型四星模型
天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:,作用力的方向在双星间的连线上,角速度相等,
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)
微笑pasta剧情
解析:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为ω1ω2。根据题意有
                                                           
                                                                ②
根据万有引力定律和牛顿定律,有
                G好听的英语歌曲                                        ③
2022平安夜图片G                                         
联立以上各式解得
                                             
根据解速度与周期的关系知
                                                            ⑥
联立③⑤⑥式解得
                   
【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其他天体的影响.A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T.
(1)可见星A所受暗星B的引力Fa可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示).
(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量ms的2倍,它将有可能成为黑洞.若可见星A
的速率v=2.7×105 m/s,运行周期T=4.7π×104 s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?内蒙古农业大学专业
G=6.67×10-11 N·m2/kg2,ms=2.0×1030 kg
解析:设A、B的圆轨道半径分别为,由题意知,A、B做匀速圆周运动的角速度相同,设其为。由牛顿运动定律,有
   设A、B间距离为,则
  由以上各式解得
  由万有引力定律,有,代入
锄禾日当午全诗  令,通过比较得
  (2)由牛顿第二定律,有
  而可见星A的轨道半径
  将代入上式解得
  (3)将代入上式得
  代入数据得
,将其代入上式得
  可见,的值随的增大而增大,试令,得
 
  可见,若使以上等式成立,则必大于2,即暗星B的质量必大于,由此可得出结论:暗星B有可能是黑洞。
【例题3】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L,质量分别为M1、M2,试计算(1)双星的轨道半径(2)双星运动的周期。
15.解析:双星绕两者连线上某点做匀速圆周运动,即:
---------
..-------  由以上两式可得:   
又由.----------  得:
【例题4】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1C点的距离为r1,S1S2的距离为r,已知引力常量为G.由此可求出S2的质量为          ( D )
A.        B.            C.            D.装甲兵工程学院分数线
答案D
解析  双星的运动周期是一样的,选S1为研究对象,根据牛顿第二定律和万有引力定律得
,则m2=.故正确选项D正确.
【例题5】如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
1求两星球做圆周运动的周期。
2在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg 和 7.35 ×1022kg 。求T2与T1两者平方之比。(结果保留3位小数)
【答案】⑴    ⑵1.01
【解析】 ⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有
,连立解得
对A根据牛顿第二定律和万有引力定律得

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。