液态模锻
液态模锻
液态模锻也称为挤压铸造、锻打铸造以及熔汤锻造等,是一种锻铸结合的工艺方法。该方法采用铸造工艺将金属熔化、精炼,并用定量浇勺将金属液浇入模具型腔,随后利用锻造工艺的加压方式,使金属液在模具型腔中流动充型,并在较大的静压力下结晶凝固,且伴有小量塑性变形,从而获得力学性能接近纯锻造锻件而优于纯铸造件的毛坯或零件。目前,采用这种工艺生产的单件质量可达300kg以上,其材料包括有金属及其合金、铸铁、碳钢和不锈钢等。采用此工艺可制造大型铝合金活塞、镍黄铜高压阀体、气动单元组件的仪表外壳,铜合金蜗轮等产品。
液态模锻工艺划分为金属液和模具准备、浇注、合模施压以及开模取件四个步骤,具体如图9-5所示。
图1液态模锻工艺流程
.1 工艺分类
液态模锻的工艺过程是把一定量的金属液浇入下模型腔中,当溶液还处于熔融或半熔融状态时施加压力,迫使金属充满型腔形成工件。在整个凝固过程中,对工件保持压力,以便
消除金属凝固时在工件内部产生的缺陷,并使其产生塑性变形,工件凝固及塑性变形,借助顶杆或其它方法将其推出,为下一次操作做好准备。
液态模锻工艺按加压方式可以分为如下三种形式:
凸模加压凝固法。如图9-6所示,熔化的金属浇入凹模1中,凸模2下行与凹模形成封闭型腔,待熔融的金属逐渐凝固时加压使其成形,这种方法适用于铸锭或形状简单的厚壁件,在凸模压力作用下液态金属不产生向上移动。
直接液态模锻法。如图9-7所示,熔融的金属浇入凹模1,凸模2下行与凹模形成封闭型腔,同时将液态金属压成一定形状。型腔中的液态金属在一定压力的作用下向上流动,中间冷却凝固。如果没有使多余金属溶液溢出的措施,则凸模的最终位置便由注入溶液的量来决定,并在工件底部和顶部厚度的变化上反映出来。杯状和空心的法兰状工件常采用直接液态模锻法加工。
怎样清理c盘
间接液态模锻法。如图9-8所示,熔融的金属浇入下模2中,上模1先与下模2组成部分型腔,待凸模3下行时将液态金属挤出形成一定的形状。间接液态模锻常采用组合模具,其特点是除凸模
作用于工件外,上模也参与加压作用。金属流动和直接液态模锻法相似。由于金属溶液是以较低的速度连续流动的,所以不会产生喷流或涡流等现象,型腔内的空气也比较容易排出,加压效果显著。
.2 液态模锻的特点
液态模锻工艺的具有如下主要特点:
在成形过程中,液态金属自始至终承受等静压,并在压力下完成结晶凝固;
已凝固的金属在压力作用下,产生塑性变形,使制件外侧壁紧贴模膛壁,液态金属获得等静压;
由于已凝固层产生塑性变形,要消耗一部分能量,因此液态金属承受的等静压不是定值。它是随着凝固层的增厚而下降的;
固-液区在压力作用下,发生强制性补缩。
因此,液态模锻与压力铸造比较,由于液态金属直接注入模膛,避免了在压力铸造情况下,液态金属在短时间内,沿着浇道充填型腔时卷入气体的危险;况且液态模锻压力是直接施加在金属液面上,避免了压力铸造时的压力损失。由液态模锻获得的锻件比压力铸造组织来的细密。
与热模锻相比较,液态模锻是在单一模膛内,利用金属流动性填充模膛,避免了热模锻时采用多个模膛和金属充满模膛时那种镦挤性的强制流动方式,使液态模锻成形能大大低于热模锻的成形能。
.3 模具结构
由于液态模锻能够加工更为复杂的模锻件,所以其使用设备、模具的结构也较为复杂,液态模锻所用的模具与液态模锻的成形方式有关,模具结构大致可以分为如下三种。
简单模。简单模的结构与工作过程如图9-9所示。其主要用于凸模加压凝固成形(方式)中。
可分凹模。可分凹模的结构与工作过程如图9-10所示。其主要用于直接液态模锻成形方式中。凹模型腔由固定凹模与活动凹模共同组成,当工件完全凝固后,凸模上行返回原始位
2021年立秋准确时间几点几分置,活动凹模移开便可取出工件。工件取出后活动凹模返回,与固定凹模又形成一完整的可以盛放金属液的型腔,这样就完成了一次模锻过程。
图5 简单模的结构与工作过程
图6 可分凹模的结构与工作过程
组合模。组合模的结构与工作过程如图9-11所示。其主要用于间接液态模锻成形方式中。间接液态模锻的凹模由2-3块组成,可以制造形状更为复杂的工件。图9-11所示的凹模由三块组成。当凹模与垫块组成一个可以盛放金属液的型腔后浇入金属液,上模下行使金属液部分成形,凸模再下行封闭型腔,并对金属液施加压力,使其成形并在压力下凝固。工件完全凝固后垫块下行,上模回程与工件脱离,最后凸模上行。工件卡在凸模上被带出凹模,并被限位停止的上模卸下,待垫块回复到原始位置时,完成一次模锻过程。
图7 组合凹模的结构与工作过程
电脑不能正常关机怎么办.4 应用范围
液态模锻工艺可在下列范围内推广应用。
金属材料。生产各种类型的金属合金,如铂合金、锌合金、铜合金、镁合金、灰口铁、球墨铸铁、碳钢、不锈钢等工件。液态金属在模具型腔内成形,受模壁的压力作用,其变形是在多向压应力而没有拉应力的状态下进行的,因而消除了脆性开裂的现象。因此可以用于—些脆性材料(如锡青铜和灰口铁等)工件的制作。
关于马的历史故事复合材料。纤维强化金属(FRM)具有重量轻、强度高、耐磨、耐高温等特点。现在已经进行了碳、碳化硅、氧化铝等包括晶须在内的许多高强度的长短纤维的研究开发工作,作为金属强化材料很有发展前途。但是,在FRM的制造上还存在一些问题,其中主要问题是纤维与液态金属难以浸润。液态模锻所使用的较高压力可以将液态金属强行挤入到纤维间的微细孔隙中,而且纤维与金属粘接牢固,从而给复合材料成形开辟了一条新途径。目前,活塞、连杆的FRM液态模锻已经得到实际应用。
形状、尺寸。液态模锻技术不仅适用于轴对称的实心零件、杯形件、通孔件以及长轴类等厚壁零件,也适用于非轴对称、壁厚不均匀、形状复杂的零件。
一般来讲,对于一些形状复杂、性能又有一定要求的制件,采用液态模锻较合适。若采用热模锻,成形困难,成本高;若改用铸造加工,使用性能难以保证。
由于施压可以使制件的轮廓清晰、精确,因此液态模锻技术也适用于模具制造及嵌镶装配件制造。
但是液态模锻产品不能太薄,否则在结晶和成形方面均会带来一些问题。当有金属工件壁厚小于5mm时,采用液态模锻成形会产生组织不均等现象。反之,如果用压铸方法来生产薄壁件则较为有利。
.5 液态模锻模具设计
(1)设计要求
设计液态模锻模具的基本要求是:所生产的制件应保证产品图样所规定的尺寸和各项技术要求,减少机加工部位和加工余量;能适应液态模锻工艺要求;在保证制件质量和安全生产的前提下,应采用合理、先进、简单的结构,动作正确可靠,易损件拆换方便,便于维修;模具上各种零件应满足机械加工工艺和热处理工艺要求,选材适当,配合精度合理,
达到各种技术要求;在条件许可时,模具应尽可能实现通用化,以缩短设计和制造周期,降低成本。
(2)设计原则
液态模锻模具的设计依据是锻件图。液态模锻锻件类型有许多种,但由于工艺的特殊性,无论哪种类型的锻件,均无需制坯,因此模具结构特点是一模一锻。为了使制件成形后顺利出模,在锻件图设计时应结合模具结构的要求,掌握以下设计原则:
分模面。其选择除按一般模锻件设计原则使模膛具有最小深度以便工件脱模外,还要考虑加压部位等因素。尽可能有较少的分模面产生,这主要是取决于锻件的复杂程度和成型后锻件出模的难易程度。阿依特斯
加工余量。非加工表面不放余量,加工表面可加放3-6mm余量,易形成表面缺陷处可增大余量。
模锻斜度。与顶出装置平行的侧面可考虑较小的出模斜度,一般取-
圆角半径。锻件的尖角与模具对应凹角处。考虑充型排气和模具制造及热处理等要求,一般设计成圆角,根据尺寸可选圆角半径为3-10mm。
收缩量。简单形状锻件,收缩量由材料性质、成形温度和模具材料确定;对于复杂形状锻件应考虑收缩不均匀问题。
锻件最小孔径。孔径与锻件尺寸有关,有金属最小孔径一般为Ф25-35mm,黑金属则为Ф35-50mm。
排气孔和排气槽。液态模锻时由于温度较高,常使用一些润滑剂(涂料)防止工件与模具粘合。模锻时润滑剂中的某些成分会挥发成气体,液态金属凝固时,也有一部分气体析出。这些气体在模锻时往往集中在转角处或其它模面上无法排出,致使工件棱角下塌,平面凹陷,出现缺陷。为了将模锻时产生的气体有效地排出,在金属液最后充填的盲腔底部应开排气孔,排气孔应小于直径2mm,有时考虑气体能顺利排出,可在分模面或镶块配合面局部开设排气沟槽,槽深0.1-0.15mm,宽度应根据锻件具体尺寸确定。
凸、凹模间隙。凸、凹模间隙要适当,过小则因凸、凹模的装配误差而相碰或咬住;过大
则金属液容易通过间隙喷出,造成事故,或者在间隙中产生毛刺,减小加压效果,阻碍卸料。合理的间隙与加压开始时间、加压速度、压力大小、工件尺寸及金属材料有关。如加压开始晚一些可采用大一些的间隙,可依工件材料来选定间隙,一般情况下铝及铝合金取0.05-0.1mm,铜及铜合金取0.1-0.3mm。可按表9-1选用。
收款码3月1日新规模具结构。设计模具时首先应对工件作全面分析,如工件的大小、形状复杂程度、分模面设置、加工面位置、工件使用要求、车间设备条件等。对形状简单的工件,可采用简单模;对形状复杂的工件可采用可分凹模或组合模。为了确保最佳的加压效果,设计时还需要注意使制件重要的受力部位或易产生疏松的部位靠近冲头端,将加压前自由凝固区和冲头挤压冷隔放在制件不重要的部位或加工余量中去;壁厚比较均匀的制件,可以按“同时凝固”原则进行设计,壁厚相差较大的制件,按“顺序结晶”原则进行设计。间接液态压制或有内浇道的液态模锻,必须有足够厚度的内浇道,以保证对制件的压力补缩。有条件时,应尽可能使制件达到“顺序结晶”的目的。
粗糙度。模具的粗糙度直接影响工件的粗糙度,应使模具型腔的粗糙度比工件的粗糙度数值小一级,以保证获得满意的工件表面质量。
表1 凸模与凹模的间隙
锻件材料
间隙 /mm
0.05-0.1或0.2
0.1-0.5或0.15-0.3
镍黄铜
0.3-0.4
0.075-0.12或0.07-0.13
(3)模具材料
对模具材料的要求。液态模锻是在—定的压力和温度下进行的,虽然不象压铸模那样受到金属液流的冲击,但却会因反复受到液体金属的加热和冷却系统的冷却作用引起模具局部热疲劳变形和损坏。一些形状复杂的模具或模具镶块等,常常在生产了200-300件以后因热疲劳而报废。液态模锻的工作温度根据工件材料的种类而不同,铝合金为600-700℃;镁合金为580-650℃;铜合金为1050-1170℃、钢为1320-1390℃或
更高。液态模锻时的工作压力比压铸高,但与一般模锻相比却很低。因此,仅要求液态模锻模具的材料在相应工作温度下有一定的抗压强度。
常用模具材料。液态模锻所用模具应选含有铬元素的合金钢材,通过按一定比例加入适当的钨、钼、钒等元素,改变钢材的耐热性能。对于浇注温度较低的铝合金来说,常用的模具材料可与压铸模相同。例如3Cr2W8、4W2CrSiV、3W4Cr2V等,或者使用普通碳素工具钢和碳素钢,也可得到满意的效果。模具的使用寿命与工件的形状、大小密切相关,如果模具型腔横截面较大且没有被金属液包围的单薄凸出部分,就不会因塑性变形与热疲劳裂损而损坏。对于模锻温度较高的铜合金和钢铁来说,常用的模具材料要求承受较高工作温度和较大的热交换。因此,在工件批量不大、工件形状较简单的情况下可采用耐热钢;对于批量较大、工件形状复杂的最好采用钼基合金制造;也可以用一般热模锻常用模具材料,来制造铜合金液态模锻锻模。锻造的模具毛坯需要经机械加工才能得到型腔。而使用耐热球墨铸铁制造模具,原材料成本低,并能直接浇出型腔,经砂轮修磨后便可使用,而且模具型腔表面光洁,容易脱模。耐热球墨铸铁制造的模具在浇铸后要做正火处理,加热至(85010)℃保温6-7h后空冷,以消除大块的碳化物,增加强度。但球墨铸铁模具表面易产生毛疵,相对使用寿命较短,需加改进。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。