七年级数学下册期末几何压轴题试题(带答案) (一)解析
一、解答题
1.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .
符号网
(1)求点D 的坐标:
(2)四边形OCDB 的面积S 四边形OCDB ;
(3)在y 轴上是否存在点P ,使S △PAB =S 四边形OCDB ;若存在,求出点P 的坐标,若不存在,请说明理由.
2.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1=  °,∠2=  °;
(2)现把三角板绕B 点逆时针旋转n °.
①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;
拍了拍什么意思
②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.
3.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)4.问题情境:
如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.
问题解决:
(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;
(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出
∠APC、α、B之间的数量关系;
(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.
5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.骂人的话大全
6.已知,AB ∥CD ,点E 为射线FG 上一点.
(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =  .
初二下册数学试卷(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.
7.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273,
∴7272)
请解答:
(157整数部分是    ,小数部分是    .
(211a 7b ,求|a ﹣b 11
(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.
8.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =.
(1)计算:()342K 和()658K ;
(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;
(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.
9.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,
的小数部分我们不可能全部写出来,而121.请解答下列问题:
_______,小数部分是_________;
(2)的小数部分为a b ,求a b +
(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 10.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如
()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()
43-,读作“3-的圈4次方”,一般地,把n a a a a a
↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.
(初步探究)(1)直接写出计算结果:()()32=-    ;()()42=-    ;
(2)关于除方,下列说法错误的是(  )
A .任何非零数的圈2次方都等于1
B .对于任何正整数(),1=1n n
C .()()433=4
D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭
的运算结果直接写成幂的形式是()93=    ,()101=2⎛⎫- ⎪⎝⎭
; (4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a =    ; (5)算一算:()()()()4
652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.
11.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.
(1)2020属于      类(填A ,B 或C );
(2)①从A 类数中任取两个数,则它们的和属于      类(填A ,B 或C );
②从A 、B 类数中任取一数,则它们的和属于      类(填A ,B 或C );
③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于      类(填A ,B 或C );
(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是      (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.
12.观察下面的变形规律:
;;….
解答下面的问题:
(1)仿照上面的格式请写出=    ; (2)若n 为正整数,请你猜想
国画四君子=    ; (3)基础应用:计算:
. (4)拓展应用1:解方程:
=2016 (5)拓展应用2:计算:. 13.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.
(1)求点B 、点D 的坐标.
(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.
①当t =1.5时,S =  平方厘米;
②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为  平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为  秒.
五一放假通知格式范文(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 14.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,
90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.
(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。