2020--2021学年第一学期八年级数学期末测试卷(新北师大版含答案)_百 ...
2020-2021学年度第一学期八年级数学期末测试卷(新北师大版)
考试时间90分钟,试卷满分100分
一.选择题(满分30分,每小题3分)
1.给出下列长度的四组线段:①1,;②3,4,5;③6,7,8;④a﹣1,a+1,4aa>1).其中能构成直角三角形的有(  )
A.①②③    B.②③④    C.①②    D.①②④
2.在平面直角坐标系中,点M(﹣4,3)所在的象限是(  )
A.第一象限    B.第二象限    C.第三象限    D.第四象限
3.在下列各数中是无理数的有(  )
,0,﹣π,,3.1415,,2.010101…(相邻两个1之间有1个0)
A.1个    B.2个    C.3个    D.4个
4.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是(  )
A.﹣1≤b≤1    B.﹣b≤1    C.﹣b    D.﹣1≤b
5.下列运算正确的是(  )
A. +    B.=3    C.    D.÷=2
6.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是(  )
A.81分、80.5分    B.89分、80.5分   
C.81分、81分    D.89分、81分
7.已知函数yk1x+b1与函数yk2x+b2的图象如图所示,则方程组的解为(  )
A.    B.    C.    D.
8.如图,ABCDEBC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为(  )
A.20°    B.30°    C.40°    D.50°
9.下列一次函数中,y的值随着x的增大而减小的是(  )
A.yx+3    B.y=﹣3x+1    C.y=2x﹣1    D.y
10.如图,在Rt△ABC中,∠C=90°,ACBC.点D是边BC上的一点,且∠ADC=60°.将Rt△ABC沿直线AD折叠,使点C′落到了点C的位置,延长AC′到E,使AEAD,连结DEBE.则下列结论:①△ADB≌△AEB:②ABDE;③∠CDE=15°;④BEAC.其中正确的个数是(  )
A.1    B.2    C.3    D.4
二.填空题(共6小题,满分18分,每小题3分)
11.的算术平方根是     
12.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=     
13.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是     
14.如图,在△ABC中,ABAC=5,BC=6,点MBC中点,MNAC于点N,则MN的长是     
15.在2x+3y=3中,若用y表示x,则x     
16.若Pm+2n,﹣m+6n)和点Q(2,﹣6)关于x轴对称,则m     n     
三.解答题(共8小题,满分52分)
17.(5分)计算:2b+﹣3a>0,b>0)
18.(5分)解方程组:
19.(6分)已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
20.(6分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2 [(x12+(x22+…+(xn2])
平均数
方差
中位数
7
     
7
八年级下册数学期末试卷
     
5.4
     
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看,     的成绩好些;
②从平均数和中位数相结合看,     的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
21.(7分)已知:如图,四边形ABCD中,ABBCAB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
22.(7分)如图,直线ABx轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO
(1)求直线AB的关系式;
(2)Px轴上一点,若△ACP的面积是△BOC面积的2倍,求点P的坐标.
                                                               
23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.
(1)这批学生的人数是多少?原计划租用45座客车多少辆?
(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?
24.(8分)如图,△ABC是等边三角形,BDAC边上的高,延长BCE使CECD、试判断DBDE之间的大小关系,并说明理由.
                                                           

2020-2021学年度第一学期八年级数学期末测试卷(新北师大版)
参考答案
一.选择题
1.给出下列长度的四组线段:①1,;②3,4,5;③6,7,8;④a﹣1,a+1,4aa>1).其中能构成直角三角形的有(  )
A.①②③    B.②③④    C.①②    D.①②④
【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
解:∵①12+22,故能构成直角三角形;②42+32=52,故能构成直角三角形;
③62+72≠82,故不能构成直角三角形;④(a﹣1)2+(a+1)2≠(4a2,故不能构成直角三角形.
∴能构成直角三角形的是①②.故选:C
2.在平面直角坐标系中,点M(﹣4,3)所在的象限是(  )
A.第一象限    B.第二象限    C.第三象限    D.第四象限
【分析】根据各象限内点的坐标特征解答即可.解:点M(﹣4,3)所在的象限是第二象限.故选:B
3.在下列各数中是无理数的有(  )

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。