学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...
广州市六中珠江中学2018-2019学年上学期期中考试七年级数学试卷
一、选择题(10小题,每小题3分,共30分)
1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是( )
A. ﹣4 B. 2 C. ﹣1 D. 3
【答案】A
【解析】
试题分析:根据有理数大小比较的法则直接求得结果,再判定正确选项.
解:∵正数和0大于负数,
∴排除2和3.
∵|﹣2|=2,|﹣1|=1,|﹣4|=4,
∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,
∴﹣4<﹣2<﹣1.
故选:A.
考点:有理数大小比较.
视频
2. 有一种记分法:80分以上的,如88分记作+8分,某们学生得74分,则应记作( ).
A. +74分 B. +6分 C. -6分 D. -14分
【答案】C
【解析】
解:因为88分记作+8分,说明基准是80分,所以74分记作-6分,故选C.
3.下列各式中,一定成立的是( )
A. 2=(-2) B. 2=-(-2) C. -2=|-2| D. -2=|(-2)|
【答案】B
【解析】
【分析】
根据有理数绝对值即可算出.
【详解】A.2≠(﹣2),错误;
B.2=-(-2),正确;
C. -2≠|-2|,错误;
D. -2≠|(-2)|,错误.
故答案选B.
【点睛】本题考查的知识点是有理数及绝对值,解题的关键是熟练的掌握有理数及绝对值.
4.地球的表面积约为51000000km,将51009000用科学记数法表示为( )
A. 0.51x109 B. 5.1×109 C. 5.1×108 D. 0.51×107
【答案】C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9-1=8.
【详解】510000000=5.1×108.
故答案选C.
【点睛】本题考查的知识点是科学计数法-表示较大的数,解题的关键是熟练的掌握科学计数法-表示较大的数.
5.下列为同类项的一组是( )
A. ab与7a B. -xy2与yx C. x与2 D. 7与-
【答案】D
【解析】
【分析】
根据同类项是字母相同且相同字母的指数也相同,可得答案.
【详解】A. 字母不同不是同类项,故A错误;
B. 相同字母的指数不同不是同类项,故B错误;
C. 字母不同不是同类项,故C错误;
D. 常数也是同类项,故D正确;
故答案选:D.
【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握同类项.
6.下列等式变形正确的是( )
A. 如果x=y,那么x-2=y-2 B. 七年级上册数学期中考试卷如果一x=8,那么x=-4
C. 如果mx=my那么x=y D. 如果|x|=|y|,那么x=y
【答案】A
【解析】
【分析】
分别利用等式的基本性质判断得出即可.
【详解】A. 如果x=y,那么x−2=y−2,故此选项正确;
B. 如果− x=8,那么x=−16,故此选项错误;
C. 如果mx=my,当m≠0时,那么x=y,故此选项错误;
D. 如果|x|=|y|,那么x=±y,此选项错误。
故答案选:A.
【点睛】本题考查的知识点是等式的性质,解题的关键是熟练的掌握等式的性质.
7.“与的差的立方”用代数式表示为( )
A. B. C. D.
【答案】D
【解析】
试题解析:“x与y的差的立方”用代数式表示为:(x﹣y)3,
故选D.
8.下列说法正确的是( )
A. 任何一个有理数的绝对值都是正数
B. 有理数可以分为正有理数和负有理数
C. 多顶式3πa3+4a2-8的次数是4
D. x的系数和次数都是1
【答案】D
【解析】
【分析】
根据绝对值的性质,单项式、多项式、整式的性质即可判断.
【详解】(A)0的绝对值是0,故A错误
(B)有理数分为正负数与0,故B错误
(C)多项式3πa3+4a2−8的次数是3,故C错误
故答案选D.
【点睛】本题考查的知识点是有理数,单项式以及多项式,解题的关键是熟练的掌握有理数,单项式以及多项式.
9.如图,四个数a、b、c、d在数轴上的位置如图所示,则下列式子中结果为正数的有(( )①ac ②|a+b| ③-(b-c) ④b+d ⑤d+c-b.
A. 2个 B. 3个 C. 4个 D. 5个
【答案】C
【解析】
【分析】
根据数轴上点的位置关系,可得a<b<0<c<d,且|a|>|d|>|c|>|b|,根据有理数的运算,可得答案.
【详解】由数轴上点的位置,得
a<b<0<c<d,且|a|>|d|>|c|>|b|.
①ac<0,
②|a+b|>0;
③−(b−c)>0,
④b+d>0,
⑤d+c−b>0,
故答案选:C.
【点睛】本题考查的知识点是有理数,单项式以及多项式,解题的关键是熟练的掌握有理数,单项式以及多项式.
10.a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,则[4+▽(2-5)]的值为( )
A. -1 B. 7 C. -7 D. 1
【答案】A
【解析】
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0,先判断a的大小,然后按照题中的运算法则求解即可.
【详解】解:∵2-5=-3<-2,且当a<-2时,▽a=a
∴▽(-3)=-3,
∴4+▽(2-5)=4-3=1>-2
∵当a>-2时,▽a=-a
∴▽[4+▽(2-5)]=▽1=-1
故答案选A.
【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里寻规律.
二、填空题(6小题,每小题3分,共18分)
11.比较大小:________ (填“>”或“<”)
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论