九年级上学期期末考试数学试卷(附参考答案与解析)
九年级上学期期末考试数学试卷(附参考答案与解析)
班级:___________姓名:___________考号:___________
一、选择题(每小题3分,共60分)
1.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有()
A.1个B.2个C.3个D.4个
2.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()
A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)3.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()
A.直角三角形的每个锐角都小于45°
B.直角三角形有一个锐角大于45°
C.直角三角形的每个锐角都大于45°
D.直角三角形有一个锐角小于45°
4.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()
初三数学上册期末试卷A.B.C.D.
5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()
A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9
6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()
A.1:3B.1:4C.1:5D.1:25
7.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°
8.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()
A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1
9.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠0
10.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()
A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或4
11.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()
A.4B.6C.2D.8
12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()
A.B.C.D.
13.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()
A.7B.8C.8或17D.7或17
14.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()
A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45
15.如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于()
A.45°B.55°C.65°D.70°
16.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()
A.1:B.1:2C.2:3D.4:9
17.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB
于点D,连接AE,则S
△ADE :S
△CDB
的值等于()
A.1:B.1:C.1:2D.2:3
18.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()
A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=
19.如图,⊙O的半径为R,以圆内接正方形ABCD的顶点B为圆心,AB为半径.画弧AC,则阴影部分的面积是()
A.(π﹣1)R2B.R2C.(π﹣2)R2D.
20.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.
其中正确的结论有()
A.4个B.3个C.2个D.1个
二、填空题(每小题3分,共12分)
21.如图,过y轴上任意一点P,作x轴的平分线,分别于反比例函数y=和y=的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为.
22.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.
23.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.
24.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.
三、解答题
25.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.
26.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。