太原市2016年中考数学试题及答案
(试卷满分120分,考试时间120分钟)
一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.的相反数是( )
A. B.-6 C.6 D.
2.不等式组的解集是( )
A.x>5 B.x<3 C.-5<x<3 D.x<5
3.以下问题不适合全面调查的是( )
A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况
C.调查全国中小学生课外阅读情况 D.调查某篮球队员的身高
4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )
5.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )
A. B. C. D.
6.下列运算正确的是 ( )
A. B. C. D.
7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用
的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物.设甲每小时搬运xkg货物,则可列方程为( )
A. B.
C. D.
8.将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )
A. B.
C. D.
9.如图,在平行四边形ABCD中,AB为⊙2016中考时间O的直径,⊙O与
DC相切于点E,与AD相交于 点F,已知AB=12,
,则弧FE的长为( )
A. B. C. D.
10.宽与长的比是(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( )
A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH
二、填空题(本大题共5个小题,每小题3分,共15分)
11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .
12.已知点(m-1,),(m-3,)是反比例函数图象上的两点,则 (填“>”或“=”或“<”)
13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂
有阴影,依此规律,第n个图案中有 个涂有阴影的小正方形(用含有n的代数式表示).
14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分 成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为_______________.
15.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,
连接AD,BE⊥AB,AE是的平分线,与DC相交于
点F,EH⊥DC于点G,交AD于点H,则HG的长为______
三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本题共2个小题,每小题5分,共10分)
(1)计算:
(2)先化简,在求值:,其中x=-2.
17.(本题7分)解方程:
18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).
(1)补全条形统计图和扇形统计图;
(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?
(3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最
感兴趣的学生的概率是
19.(本题7分)请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.
阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线
ABC是圆的一条折弦),BC>AB,M是弧ABC的中点,则从M向B所作
垂线的垂足D是折弦ABC的中点,即CD=AB+BD.
下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是弧的中点,
∴MA=MC
...
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论