2021高考数学全国乙卷理(试题+解析)
绝密★启用前
2021年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设,则(    )
A.     B.     C.     D.
【答案】C
【解析】
【分析】设,利用共轭复数的定义以及复数的加减法可得出关于的等式,解出这两个未知数的值,即可得出复数.
【详解】设,则,则
所以,,解得,因此,.
故选:C.
2. 已知集合,则(    )
A.     B.     C.     D.
【答案】C
【解析】
【分析】分析可得,由此可得出结论.
【详解】任取,则,其中,所以,,故
因此,.
故选:C.
3. 已知命题﹔命题,则下列命题中为真命题的是(    )
A.     B.     C.     D.
【答案】A
【解析】
【分析】由正弦函数的有界性确定命题的真假性,由指数函数的知识确定命题的真假性,由此确定正确选项.
【详解】由于,所以命题为真命题;
由于上为增函数,,所以,所以命题为真命题;
所以为真命题,为假命题.
故选:A.
4. 设函数,则下列函数中为奇函数的是(    )
A     B.     C.     D.
【答案】B
【解析】
【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.
【详解】由题意可得
对于A,不是奇函数;
对于B,是奇函数;
对于C,,定义域不关于原点对称,不是奇函数;
对于D,,定义域不关于原点对称,不是奇函数.国考准考证号
故选:B
【点睛】本题主要考查奇函数定义,考查学生对概念理解,是一道容易题.
5. 在正方体中,P的中点,则直线所成的角为(    )
A.     B.     C.     D.
【答案】D
【解析】
【分析】平移直线,将直线所成的角转化为所成的角,解三角形即可.
【详解】
如图,连接,因为
所以或其补角为直线所成的角,
因为平面,所以,又
所以平面,所以
设正方体棱长为2,则
,所以.
故选:D
6. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有(    )
A. 60种    B. 120种    C. 240种    D. 480种
【答案】C
【解析】
【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.
【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
故选:C.
【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
7. 把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则(    )
A.     B.
C.     D.
【答案】B
【解析】
【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到,即得,再利用换元思想求得的解析表达式;
解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的解析表达式.
【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,
根据已知得到了函数的图象,所以
,则,
所以,所以
解法二:由已知的函数逆向变换,
第一步:向左平移个单位长度,得到的图象,
第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。