第14讲 函数的应用
陕西《中考说明》 | 陕西2012~2014年中考试题分析 | ||||||
考点归纳 | 考试要求 | 年份 | 题型 | 题号 | 分值 | 考查内容 | 分值 |
比重 | |||||||
函数的应用 | 1.能用一次函数解决实际问题,结合具体情境体会一次函数的意义;2.能用反比例函数解决某些实际问题,结合具体情境体会反比例函数的意义;3.能用二次函数解决简单的实际问题,通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义 | ||||||
2014 | 选择题 | 10 | 3 | 一次函数的实际应用(1.求函数关系式;2.代值计算) | |||
2013 | 解答题 | 21 | 8 | 一次函数的实际应用 | |||
2012 | 解答题 | 21 | 8 | 一次函数的实际应用(1.求函数关系式;2.代值计算) | 6.7% | ||
陕西近三年中考对本节内容的考查主要是一次函数的实际应用,每年都在解答题中考查,且都稳定在第21题,分值为8分,考查形式一般有两种,一种是结合图象考查,一种为涉及图象,而对于反比例函数和二次函数的实际应用没有考查过.预计在2015年的中考中,本节内容仍会在解答题第21题考查一次函数的实际应用,结合图象考查的可能性较大,考生在复习时应熟练掌握本节的考点,通过做习题多加训练,以便从容应考.
1.函数的应用主要涉及到经济决策、市场经济等方面的应用.
2.利用函数知识解应用题的一般步骤:
(1)设定实际问题中的变量;
(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;
(3)确定自变量的取值范围,保证自变量具有实际意义;
(4)利用函数的性质解决问题;
(5)写出答案.
3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.
一种模型
函数的图象与性质是研究现实世界的一个重要手段,对于函数的实际问题要认真分析,构建函数模型,从而解决实际问题.函数的图象与性质也是中考重点考查的一个方面.
两种技巧
(1)实际问题中函数解析式的求法:设x为自变量,y为x的函数,在求解析式时,一般与列方程解应用题一样先列出关于x,y的二元方程,再用含x的代数式表示y.
(2)利用题中的不等关系,或结合实际求出自变量x的取值范围.
三种题型
(1)选择题——关键:读懂函数图象,学会联系实际;
(2)综合题——关键:运用数形结合思想;
(3)求运动过程中的函数解析式——关键:以静制动.
1.(2014·陕西)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?
解:(1)由题意,得,当0<x≤1时,y=22+6=28;当x>1时y=28+10(x-1)=10x+18;∴y= (2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元
2.(2013·陕西)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
解:(1)由图象可设OA段图象的函数表达式为y=kx,当x=1.5时,y=90;所以:1.5k=90解得k=60即y=60x(0≤x≤1.5),当x=0.5时,y=60×0.5=30,答:行驶半小时时,他们离家30千米 (2)由图象可设AB段图象的函数表达式为y=k′x+b,因为A(1.5,90),B(2.5,170)在AB上,代入得解得:k′=80,b=-30,所以y=80x-30(1.5≤x≤2.5) (3)当x=2时,代入得:y=80×2-30=130,所以170-130=40,答:他们出发2小时时,离目的地还有40千米
3.(2012·陕西)科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.
(1)求出y与x的函数表达式;
(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?
解:(1)设y=kx+b,则有解之,得∴y=-x+299 (2)当x=1200时,y=-×1200+299=260.6(克/立方米),∴该山山顶处的空气含氧量约为260.6克/立方米
一次函数相关应用题
【例1】 (2014·绵阳)绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.
(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;
(2)请计算并确定出最节省费用的购票方案.
解:(1)按优惠方案①可得y1=20×4+(x-4)×5=5x+60(x≥4),按优惠方案②可得y2=(5x+20×4)×90%=4.5x+72(x≥4) (2)因为y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0学生票五一可以用吗,解得x=24,∴当购买24张学生票时,两种优惠方案付款一样多.②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案①付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,当x>24时,y1>y2,优惠方案②付款较少
【点评】 解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.
1.(2013·黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案.哪种方案获利最大?最大获利为多少元?
解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得解得
∴y与x之间的函数关系式为y=-x+300
(2)∵y=-x+300,∴当x=120时,y=180.设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意得120a+180×2a=7200,解得a=15,∴乙品牌的进货单价是30元.即甲、乙两种品牌的文具盒进货单价分别为15元,30元 (3)设甲品牌文具盒进货m个,则乙品牌文具盒的进货(-m+300)个,由题意得解得180≤m≤181,∵m为整数,∴m=180,181.∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意得W=4m+9(-m+300)=-5m+2700.∵k=-5<0,∴W随m的增大而减小,∴m=180时,W最大=1800元
反比例函数相关应用题
【例2】 (2013·德州)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.
(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;
(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?
解:(1)由题意得y=,把y=120代入y=,得x=3.把y=180代入y=,得x=2,∴自变量的取值范围为2≤x≤3,∴y=(2≤x≤3)
(2)设原计划平均每天运送土石方x万立方米,则实际平均每天运送土石方(x+0.5)万立方米,根据题意得-=24,解得x=2.5或x=-3.经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去.答:原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米
【点评】 本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
2.(2012·安徽)甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少元钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买该商品花钱较少?请说明理由.
解:(1)510-200=310(元) (2)p=,∴p随x的增大而减小 (3)购x元(200≤x<400)在甲商场的优惠额是100元,乙商场的优惠额是x-0.6x=0.4x,当0.4x<100,即200≤x<250时,选甲商场优惠;当0.4x=100,即x=250时,选甲、乙商场一样优惠;当0.4x>100,即250<x<400时,选乙商场优惠
二次函数相关应用题
【例3】 如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求这条抛物线的解析式;
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论