外卖配送优化的创新点
后台是把一个城市是划不同的区域,用户只有处在特定的区域内打开App才能看到这个区域内的商家,才能点这个商家的订单。每一个区域都有特定的骑手为区域内的商家服务。每个区域每天都有大量的订单,如何高效地提升资源的配置效率,是美团外卖想要解决的痛点。
60万的骑手,每个月光薪资就会有几十亿的人民币支出。如何控制成本,提高效率呢?可以从两个方面入手,第一,对骑手进行专业的培训;第二,对配送模式进行效率优化,例如根据区域的实际情况制定合理的配送费,以及合理的配送人数。
外卖订单量怎么提升人工智能的发展,大致可以分为3个阶段,第一个阶段是Descriptive,做一些检索和精确的计算(比如说加减乘除),第二个阶段Predictive,其实是用算法发现一些规律,这一工作最早可以追溯到最小二乘等线性拟合算法,复杂一些的就是用语音识别,人脸识别发现一些规律。目前大部分成功的AI应用都是在第二个阶段。第三个阶段Prescriptive是基于这些规律进行最优的决策,比如说机票的动态定价,物流的订单分配。
在基础建设方面,要有一个大数据平台,要保持业务层面和机制的整体运行,在这个基础之
上,还需要机器学习的平台,在这之上有许多机器学习的模型,方便对数据进行训练学习。在这两个基础之上还有大量业务的架构。一方面是机器学习的方法技术,另一方面是运输优化。机器学习解决一些数据的统计和数据的规律分析。当模型的边界比较清晰的时候,就需要运输优化来解决一些问题。ETR问题也是需要考虑的,其实就是怎么样去估计一个路径上每一个点的时间。比如说骑手从一个地方出发,给他规划一个线路,他应该在最少的时间内配送最多的订单且路程最短。需要给每一个节点规划出什么时间可以完成。这个问题意义很大,因为在做订单分配的时候,要考虑是不是能准时送达,准时与否非常影响用户的体验。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论