集合上面加一杠表示集合字母的补集,也就是所有不属于集合字母的元素。
由一个或多个确定的元素所构成的整体叫做集合。若x是集合A的元素,则记作x∈A。集合中的元素有三个特征:确定性(集合中的元素必须是确定的)。互异性(集合中的元素互不相同)。无序性(集合中的元素没有先后之分),如集合{3,4,5}和{3,5,4}算作同一个集合。
扩展资料:
假设有实数x < y:[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;(x,y):小括号是不包括边界,即表示大于x、小于y的数。
交换律:A∩B=B∩A;A∪B=B∪A
结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C横线
同一律:A∪∅=A;A∩U=A
求补律:A∪A'=U;A∩A'=∅
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论