本电子闹钟的设计是以单片机技术为核心,采用了小规模集成度的单片机制作的功能相对完善的电子闹钟。硬件设计应用了成熟的数字钟电路的基本设计方法,并详细介绍了系统的工作原理。硬件电路中除了使用AT89C51外,另外还有晶振、电阻、电容、发光二极管、开关、喇叭等元件。在硬件电路的基础上,软件设计按照系统设计功能的要求,运用所学的汇编语言,实现的功能包括‘时时-分分-秒秒’显示,设定和修改定时时间的小时和分钟、校正时钟时间的小时、分钟和秒、定时时间到能发出一分钟的报警声。
一 芯片介绍
AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,外形及引脚排列如图1-1所示。
图1-1 AT89C51引脚图
74LS573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁
存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。外形及引脚排列如图1-2所示。
图1-2 74LS573引脚图
二 硬件电路设计
1 时钟电路设计
AT89C51系列的单片机的时钟方式分为内部方式和外部方式。内部方式就是在单片机的XTAL1和XTAL2的两引脚外接晶振,就构成了自己振荡器在单片机内部产生时钟脉冲信号。外部时钟方式是把外部已经有的时钟信号引入到单片机内部。时钟电路在计算机系统中起着非常重要的作用,是保证系统正常工作的基础。在一个单片机应用系统中,时钟有两方面的含义:一是指为保障系统正常工作的基准震荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间。其电路图如图2-1所示。
图2-1 时钟电路图
2 复位电路设计
复位操作完成单片机内电路的初始化,使单片机从一种确定的状态开始运行。
当AT89C51单片机的复位引脚RST出现5ms以上的高电平时,单片机就完成了复位操作。如果RST持续为高电平,单片机就处于循环复位状态,而无法执行程序。因此要求单片机复位后能脱离复位状态复位操作通常有2种基本形式:上电复位、开关复位。上电复位要求接通电源后,自动实现复位操作。开关复位要求在电源接通的条件下,在单片机运行期间,如果发生死机,用按钮开关操作使单片机复位。其电路图如图2-2所示。
图2-2 复位电路图
3 键盘电路设计
本次电子闹钟的设计共使用了4个按键,各个按键的功能如表1所示。
表1 各按键的接法和功能
按键名称 | 连线方法 | 按键功能 |
K1 K2 K3 K4 | 一端接P1.0,一端接地 石英表和电子表的区别一端接P1.1,一端接地 一端接P1.2,一端接地 一端接P1.3,一端接地 | 控制调整当前时间;同时使闹钟的分加1 控制闹钟时间 定时闹钟时小时加1;时间显示时分加1 刷新当前显示时间 |
4 显示电路设计
数码显示有静态显示方式与动态显示方式两种。工作在静态显示方式时,数码管的位线与电源一直相联,每个数码管均处在通电状态,电路的待显示信号经译码驱动电路后分别传输给显示电路,每个数码管同时收到并显示各自接受到的信号。静态显示时每个数码管均联接有7段线,即每个数码管都需要7个联接端口,这样显示电路在输出端需要的联接端口数等于7,数字电路的待显示信号位数越多,显示电路需要的联接端口就越多。
工作在动态显示方式时,数码管的位线在扫描控制电路的控制下按设定顺序导通,即电路中的数码管是逐个接通电源,数码管的段线以并联的方式与译码电路联接,扫描控制电路按照设定顺序将数字电路的待显示信号逐个传输给数码管,数码管也按照扫描控制电路设定的显示顺序逐个进行字符显示。动态显示时,数码管的位线数增加,每个数码管均有一个位线控制其是否通电,但是数码管的段线却大幅减少,不论待显示信号的个有多少,数码管的段线都是根。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论