海伦—秦九昭公式的推导和应用
        海伦—秦九昭公式的推导与应用
 
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦
  (Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
  假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
  S=√[p(p-a)(p-b)(p-c)]
  而公式里的p为半周长:
  p=(a+b+c)/2
  ——————————————————————————————————————————————
  注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以
  S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
  ——————————————————————————————————————————————
  由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的
公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
  证明(1):
  与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理
  cosC = (a^2+b^2-c^2)/2ab
  S=1/2*ab*sinC
  =1/2*ab*√(1-cos^2 C)
  =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
  =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
  =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
  =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
  =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
  设p=(a+b+c)/2
  则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
  上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
  =√[p(p-a)(p-b)(p-c)]
  所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
  证明(2):
  我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角
形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。
  秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
  所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”。以、a,b,c表示三角形面积、大斜、中斜、小斜,所以
  q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
  当P=1时, 2=q,
  S=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
  因式分解
  1/16[(c+a) 2-b 2][b 2-(c-a) 2]
  =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
  =1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
  =p(p-a)(p-b)(p-c)
  由此可得:
  S=√[p(p-a)(p-b)(p-c)]
  其中p=1/2(a+b+c)
  这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
  S=c/2*根号下a^-{(a^-b^+c^)/2c}^ .其中c>b>a.
  根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
  已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
  这里用海伦公式的推广
  S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)
  代入解得s=8√ 3
  海伦公式的几种另证及其推广
  关于三角形的面积计算公式在解题中主要应用的有:
  设ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为ABC外接圆、内切圆的半径,p = (a+b+c),则
  SABC
  =1/2 aha
  =1/2 ab×sinC
  =1/2 r p
  = 2R2sinAsinBsinC
  = √[p(p-a)(p-b)(p-c)] 秦九韶著作
  其中,SABC =√[p(p-a)(p-b)(p-c)] 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。
  海伦公式在解题中有十分重要的应用。
  一、 海伦公式的证明
  证一 勾股定理
  如右图
勾股定理证明海伦公式
  证二:斯氏定理 
  如右图。 
 
斯氏定理证明海伦公式
  证三:余弦定理
  分析:由变形 S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。
  证明:要证明S =
  则要证S =
  =
  = ab×sinC
  此时S = ab×sinC为三角形计算公式,故得证。
  证四:恒等式
 
恒等式证明(1)
 
恒等式证明(2)
 证五:半角定理
  由证一,x = = -c = p-c
  y = = -a = p-a
  z = = -b = p-b
  r3 = r =
  SABC = r·p = 故得证。
  二、 海伦公式的推广
  由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=
  现根据猜想进行证明。
  证明:如图,延长DA,CB交于点E。
  设EA = e EB = f
  ∵∠1+2 =180○ 2+3 =180○
  ∴∠1 =3 ∴△EAB~ECD
  = = =
  解得: e = f =
  由于S四边形ABCD = SEAB
  将跟b = 代入公式变形,得:
  S四边形ABCD =
  所以,海伦公式的推广得证。
  三、 海伦公式的推广的应用
  海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事倍功半。
  例题:如图,四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.
  求:四边形可能为等腰梯形。
  解:设BC = x
  由海伦公式的推广,得:
  (4-x)(2+x)2 =27
  x4-12x2-16x+27 = 0
  x2(x2—1)-11x(x-1)-27(x-1) = 0
  (x-1)(x3+x2-11x-27) = 0
  x = 1或x3+x2-11x-27 = 0
  当x = 1时,AD = BC = 1
  四边形可能为等腰梯形。
  在程序中实现(VBS):
  dima,b,c,p,q,s
  a=inputbox("请输入三角形第一边的长度")
  b=inputbox("请输入三角形第二边的长度")
  c=inputbox("请输入三角形第三边的长度")
  a=1*a
  b=1*b
  c=1*c
  p=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)
  q=sqr(p)
  s=(1/4)*q
  msgbox("三角形面积为"&s), ,"三角形面积"
  在VC中实现
  #include<stdio.h>
  #include<math.h>
  main()
  {
  inta,b,c,s;
  printf("输入第一边\n");
  scanf("%d",&a);
  printf("输入第二边\n");
  scanf("%d",&b);
  printf("输入第三边\n");
  scanf("%d",&c);
  s=(a+b+c)/2;
  printf("面积为:%f\n",sqrt(s*(s-a)*(s-b)*(s-c)));
  }
 
海伦公式

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。