2022年湖北省襄阳市中考数学真题及答案
2022年湖北省襄阳市中考数学真题及答案
一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.
1.(3分)若气温上升2℃记作+2℃,则气温下降3℃记作()
A.﹣2℃B.+2℃C.﹣3℃D.+3℃
2.(3分)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()
A.B.
C.D.
3.(3分)2021年,襄阳市经济持续稳定恢复,综合实力显著增强,人均地区生产总值再上新台阶,突破100000元大关.将100000用科学记数法表示为()
A.1×104B.1×105C.10×104D.0.1×106
今年中考时间2022具体时间4.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()
A.30°B.40°C.60°D.70°
5.(3分)襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃圾分类回收.下列图形分别是可
回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是()
A.B.
C.D.
6.(3分)下列说法正确的是()
A.自然现象中,“太阳东方升起”是必然事件
B.成语“水中捞月”所描述的事件,是随机事件
C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨
D.若抽奖活动的中奖概率为,则抽奖50次必中奖1次
7.(3分)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()
A.若OB=OD,则▱ABCD是菱形
B.若AC=BD,则▱ABCD是菱形
C.若OA=OD,则▱ABCD是菱形
D.若AC⊥BD,则▱ABCD是菱形
8.(3分)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()
A.=2×B.=2×
C.=2×D.=2×
9.(3分)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图象上,则y 1,y 2的大小关系是()
A.y 1<y 2
B.y 1=y 2
C.y 1>y 2
D.不能确定
10.(3分)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =在同一平面直角坐标系中的图象可能是(
A.B.
C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上。11.(3分)化简分式:
+
12.(3分)不等式组的解集是.
13.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是
14.(3分)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =x 2+x +2(0≤x ≤20.5),当她与跳台边缘的水
平距离为
m 时,竖直高度达到最大值.
15.(3分)已知⊙O的直径AB长为2,弦AC
长为,那么弦AC所对的圆周角的度数等于.
三、解答题(本大题共9个小题,共72分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内。
17.(6分)先化简,再求值:(a+2b)2+(a+2b)(a﹣2b)+2a(b﹣a),其中a =﹣,b =+.18.(6分)在“双减”背景下,某区教育部门想了解该区A,B两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:
【收集数据】A学校50名九年级学生中,课后书面作业时长在70.5≤x<80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,
75,75,76,76,76,77,77,78,80.
【整理数据】不完整的两所学校的频数分布表如下,不完整的A学校频数分布直方图如图所示:
组别50.5≤x<
60.560.5≤x<
70.5
70.5≤x<
80.5
80.5≤x<
90.5
90.5≤x<
100.5
A学校515x84
B学校71012174
【分析数据】两组数据的平均数、众数、中位数、方差如下表:
特征数平均数众数中位数方差
A学校7475y127.36
B学校748573144.12
根据以上信息,回答下列问题:
(1)本次调查是调查(选填“抽样”或“全面”);
(2)统计表中,x=,y=;
(3)补全频数分布直方图;
(4)在这次调查中,课后书面作业时长波动较小的是学校(选填“A”或“B”);
(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有人.
19.(6分)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD为10m,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)
20.(6分)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.
(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);
(2)求证:AD=AE.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。