金属材料的损伤和断裂(韧性、脆性)
收录于话题
一、“彗星号”大型客机失事惨剧促发金属断裂行为研究史的开端
1954年1月10日,一架英国海外航空公司(BOAC)的一架“彗星”1型客机(航班编号781号)从意大利罗马起飞,飞往目的地是英国伦敦。飞机起飞后26分钟,机身在空中解体,坠入地中海,机上所有乘客和机组人员全部遇难。这次事故震惊了全世界,英国成立了专门的调查组调查事故。该型客机停飞两个月。
就在英国海外航空公司总裁保证该机型不会再出事并复飞后不久,另一架“彗星”型客机也发生了同样的空中解体事故,坠毁在意大利那不勒斯附近海中。在此一年的时间里,共有3架“彗星”型客机在空中先后解体坠毁。此惨剧令当时英国为之骄傲的“彗星号”大型客机寿终正寝,也
促发了科学家研究低应力断裂的“裂纹力学”,此即断裂力学诞生的由来。
“彗星号”大型民航客机
对事故的调查发现,“彗星”客机采用的是方形舷窗。经多次起降后,在方形舷窗拐角(直角)处会出现金属疲劳导致的裂纹(裂隙)。正是这个小小的裂纹引起了灾难事故。后来,所有客机舷窗均采用圆形或设计有很大的圆角,以减小应力集中,提高金属疲劳强度;延缓疲劳裂纹的发生,此系后话。
进一步研究证明,裂纹的存在,引起飞机结构发生低应力破坏,通行的设计准则遇到极大挑战。这个研究孕育了断裂力学的诞生,并促进了其快速发展。到1957年,美国科学家欧文(G.R.Irwin)提出应力强度因子的概念,从此线弹性断裂力学基本建立起来。断裂力学诞生并用于结构设计后,源于裂纹引发的灾难事故大大减少,可见断裂力学是破解结构低应力破坏的金钥匙。
再看一组图片
所有的工程结构都是由工程材料制造而成;
所有的断裂事故,均源于材料的微、细、宏观的损伤和断裂。
材料与结构的损伤断裂引发的事故实在太多。
二、材料的力学性能参数:强度、塑性、韧性、脆性、弹性
从应力应变曲线上也可看出脆性或韧性材料
材料的力学性能指的是材料在给定的外界条件下所表现的行为,完全由材料的微观组织结构决定。
(1)强度
它指材料抵抗变形和断裂的能力;金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。强度是机械零部件首先应满足的基本要求。
按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。
①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。
②塑性材料强度:碳钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余
变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与 0.2%的塑性变形相对应的应力为名义屈服极限,用强度表示。
③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。
(2)塑性
它表示材料断裂时总的变形程度;在外力作用下,材料能稳定地发生永久变形而不破坏其完整性的能力。应力超过弹性极限后,发生的变形包括弹性变形和塑性变形两部分,塑性变形不可逆。
对大多数的工程材料,当其应力低于比例极限(弹性极限)时,应力一应变关系是线性的,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。而应力超过弹性极限后,发生的变形包括弹性变形和塑性变形两部分,塑性变形不可逆。评价金属材料的塑性指标包括
伸长率(延伸率)A 和断面收缩率Z表示。
(3)韧性
它指材料在塑形变形和断裂的全过程中吸收能量的能力;是强度和塑形的综合表现;其测定值一般用带有预制裂纹/缺口的试样测定,其值也表示材料抵抗裂纹扩展的能力,如K1C,COD,J积分等。
韧性越好,则发生脆性断裂的可能性越小。韧性可在材料科学及冶金学上,韧性是指当承受应力时对折断的抵抗,其定义为材料在破裂前所能吸收的能量与体积的比值。
其分为断裂韧性和冲击韧性两种:
断裂韧性材料阻止宏观裂纹失稳扩展能力的度量,也是材料抵抗脆性破坏的韧性参数。它和裂纹本身的大小、形状及外加应力大小无关。是材料固有的特性,只与材料本身、热处理及加工工艺有关。是应力强度因子的临界值。常用断裂前物体吸收的能量或外界对物体所作的功表示。例如应力-应变曲线下的面积。韧性材料因具有大的断裂伸长值,所以有较大的断裂韧性,而脆性材料一般断裂韧性较小。
韧性断裂冲击韧性是反映金属材料对外来冲击负荷的抵抗能力,一般由冲击韧性值(ak)和冲击功(Ak)表示,其单位分别为J/cm2和J(焦耳)。 冲击韧性或冲击功试验(简称"冲击试验"),因试验温度不同而分为常温、低温和高温冲击试验三种;若按试样缺口形状又可分为"V"形缺口和"U"形缺口冲击试验两种。冲击韧度指标的实际意义在于揭示材料的变脆倾向。
(4)脆性
脆性材料力学性能的特点是抗压强度远大于抗拉强度,破坏时的极限应变值极小。砖、石材、陶瓷、玻璃、混凝土、铸铁等都是脆性材料。与韧性材料相比,它们对抵抗冲击荷载和承受震动作用是相当不利的。作为工程材料,我们希望它同时具有良好的韧性和刚性。在改善材料的韧性时,还应设法提高刚性。一般加入弹性体可增加韧性,加入无机填料可增加刚性。最有效的方法是将弹性体的增韧和填料的增强结合起来。
(5)弹性
指材料受力变形后,恢复原来形状的能力。
三、断口分析、断裂力学及断裂学科
常用的断裂分类方法及其特征见下表:
综上可知,从五个方面进行断裂分析,从而形成断裂学科的三个分支点。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论