完整版材料力学性能课后习题答案整理
材料力学性能课后习题答案
第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
韧性断裂7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量
r规定残余伸长应力0.2屈服强度
gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P15
3、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?
答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】
2、现有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?
选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。
5、多晶体金属产生明显屈服的条件,并解释bcc金属及其合金与fcc金属及其合金屈服行为不同的原因。
答:多晶体金属产生明显屈服的条件:1)材料变形前可动位错密度小,或虽有大量位错但被钉扎住,如钢中的位错为间隙原子、杂质原子或第二相质点所钉扎。2)随塑性变形的发生,位错能快速增殖;3)位错运动速率与外加应力之间有强烈依存关系。
金属材料塑性变形的应变速率与位错密度、位错运动速率和柏氏矢量成正比,而位错运动速率又决定于外加应力的滑移分切应力。(bv,v(m))0塑性变形初始阶段,由于可动位错密度少,为了维持高的应变速率,必须增大位错运动速率。而要提高位错运动速率必须要有高的应力,这对应着上屈服点。一旦塑性变形产生,位错大量增殖,位错运动速率下降,相应的应力随之下降,从而产生了屈服现象。
对于bcc金属及其合金,位错运动速率应力敏感指数m’低,即位错运动速率变化所需应力变化大,屈服现象明显。而fcc金属及其合金,其位错运动速率应力敏感指数高,屈服现象不明显。
6、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?
答:随含碳量的增加,屈服现象越来越不明显。这是由于随含碳量高,其组织中渗碳体含量增多,对基体起强化作用,使得材料屈服强度很高,塑性降低。
7、决定金属屈服强度的因素有哪些?【P12】
答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素
1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定派拉力:
位错交互作用力
(a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)
2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积的长度,使屈服强度降低(细晶强化)。屈服强度与晶粒大小的关系:霍尔-派奇(Hall-Petch)ζ=ζi+kyd-1/2
3.溶质元素加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)
4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。不可变形第二相位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。弥散强化:第二相质点弥散分布在基体中起到的强化作用。沉淀强化:第二相质点经过固溶后沉淀析出起到的强化作用(二)影响屈服强度的外因素
1.温度一般的规律是温度升高,屈服强度降低。原因:派拉力属于短程力,对温度十分敏感
2.应变速率应变速率大,强度增加。ζε,t=C1(ε)m
3.应力状态切应力分量越大,越有利于塑性变形,屈服强度越低缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。
8.试述ψδ两种塑性指标评定金属材料属性的优缺点
答:断后伸长率是试样拉断后标距的伸长与原始标距的百分比。断面收缩率是试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积的百分比。
对于在单一拉伸条件下工作的长形零件,无论其是否产生缩颈,都用δ和δgt评定材料的塑性,因为产生缩颈时局部区域的塑性变形量对总伸长实际上没有什么影响。
若金属机件非长形,在拉伸时形成缩颈,则用ψ作为塑性指标。因为ψ反映了材料断裂前的最大塑性变形量,而此时δ不能显示材料的最大塑性。ψ是在复杂应力状态下形成的,冶金因素的变化对性能的影响在ψ上更为突出,因此ψ比δ对组织变化更为敏感。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论