大数据背景下的信息安全问题
大数据具有体量巨大、类型繁杂、处理速度快、价值密度低四大特点,因此,对于个人来说,难以处理极其庞大的数据;大数据所搜集提取的个人信息可能连本人都不完全知晓,比如个人的行为特征、语言风格、爱好兴趣等。在大数据时代如何保护个人敏感信息或隐私,必将成为高难度的世界课题。
申诉成功凭证2013年6月,美国前中情局雇员斯诺登曝光了始于2007年小布什时期美国国家安全局和联邦调查局启动的代号为“棱镜”的秘密项目。美国国家安全局通过接入雅虎、谷歌、微软、苹果等9家美国互联网公司中心服务器,对邮件、图片、视频、电话等10类数据进行监控,以搜集情报,监视民众的网络活动。
“棱镜”项目缘于2004年美国政府的“星风”监视计划。但是,当时小布什政府由于法律程序等敏感问题而做出让步,美国本土的监听项目有所缩减。为了“星风”计划的继续进行,小布什
政府通过司法程序将“星风”监视计划分拆成由国家安全局执行的4个监视计划,包括“棱镜”、“主干道”、“码头”和“核子”,均交由美国家安全局执掌。“棱镜”项目用于监视互联网个人信息。“主干道”和“码头”项目负责存储和分析通信和互联网上数以亿兆计的“元数据”。元数据主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。“核子”项目负责内容信息的获取,截获电话通话者对话内容及关键词,通过拦截通话以及通话者所提及的地点,来实现日常的监控。 开通农行网上银行
由此可见,斯诺登不仅揭露了美国的大规模窃听计划,更揭示了大数据时代国家信息安全保护问题。大数据的分析与使用,无论对个人(如跟踪健康状况防范疾病)、对企业(如了解市场偏好以有效安排产品设计生产营销)乃至对国家(如防范疫情或恐怖主义)显然都有巨大的好处,从商业用途来说,谷歌、微软、雅虎等互联网公司,完全可以通过它们掌握到的数以百万计、千万计甚至亿万计的数据,经由“超级计算”,准确推断消费者的爱好及习惯、商品的销售额、疾病疫情的发展趋势。商业如此,在政治、经济、军事等方面亦存在诸多的用途和潜在利益。像“棱镜”计划里涉及的谷歌、雅虎、苹果、微软等大网站,
人们每天由于各种业务需要,会把大量个人信息输入其中,但常常并不被事先告知数据的用途。而这些数据会被企业或政府用来进行一些特殊的计算或分析,如通过对大数据的分析预测来对人们尚未实施的行为进行惩罚。
比如“大数据之父”舍恩伯格曾披露过一个例子:在美国有一个计划名为“预测式配警”,通过对大数据分析来预测美国某个城市的某条街道的某个时段是犯罪高峰时段,然后在那个位置部署更多的警力。从此该地区居民将长时间被监控,这是一种变相的侵犯或惩罚。他们不是因为做错事,而是因为某个计算机的算法预测他们可能做错事而被惩罚了,显然这是不公平的。美国国安局拥有的正是类似的一套基于“大数据”的新型情报收集系统,这套名为“无界爆料”的系统,以30天为周期,从全球网络系统中接收到970亿条讯息,再通过比对信用卡或者通讯记录等方式,能几近真实地还原个人的实时状况。
因此,必须建立一套规则予以规范和约束对大数据的收集和使用。第一,虽然这些信息储
存在不同的服务器上,但这些数据是用户的资产,拥有权属于用户自己而不是这些公司,这是必须明确的,就像财产所有权一样,个人隐私数据也应该有所有权。第二,利用大数据、云计算技术给用户提供信息服务的公司或企业,需要把收集到的用户数据进行安全存储和传输,这是企业的责任和义务。第三,如果企业或政府要使用用户的信息,一定要让用户有知情权和选择权,泄露用户数据甚至牟利,不仅要被视作不道德的行为,而且是非法行为。
大数据时代已经到来
物联网、云计算、移动互联网等新技术的发展,使得手机、平板电脑、PC以及遍布地球各个角落的传感器,成为数据来源和承载方式。有科技公司估计,互联网上的数据量每两年会翻一番,到2013年互联网上的数据量将达到每年667EB(1EB=1000000000GB)。这些数据绝大多数是“非结构化数据”,通常不能为传统的数据库所用,但随着自然语言处理、模式识别和机器学习等人工智能技术的发展,这些庞大的数据“宝藏”将成为未来世界的新“石油”。
1.大数据具有四个典型特征
大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用四个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
第一,数据体量巨大(Volume)。到目前为止,人类生产的所有印刷材料的数据量是200PB(1PB=1000TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=1000PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
第二,数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等等多类型的数据对数据的处理能力提出了更高的要求。
第三,价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部一小时的视频,在连续不间断监控过程中,可能有用的数据仅仅只有一两秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”是目前
大数据汹涌背景下亟待解决的难题。
第四,处理速度快(Velocity)。这是大数据区分于传统数据挖掘最显著的特征。根据IDC的“数字宇宙”的报告,预计到2020年全球数据使用量将会达到35.2ZB。
在如此海量的数据面前,处理数据的效率就是企业的生命。
杀阡陌剧照2.大数据成为国家和企业的核心资产2012年瑞士达沃斯论坛上发布的《大数据,大影响》的报告称,数据已经成为一种新的经济资产类别,就像货币或黄金一样。美国奥巴马政府已经把“大数据”上升到了国家战略层面,2012年3月29日美国宣布投资2亿美元启动“大数据研究和发展计划”,借以增强收集海量数据、分析萃取信息的能力。美国政府认为,大数据是“未来的新石油”,一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,未来对数据的占有和控制甚至将成为继陆权、海权、空权之外国家的另一个核心资产。
菏泽邮编对于企业来说,数据正在取代人才成为企业的核心竞争力。在进入大数据时代之前,企业脱离于人才而单独存在的智商基本是零,正因如此,人才对企业异常重要。在大数据时代,
数据资产取代人才成为企业智商最重要的载体。这些能够被企业随时获取的数据,可以帮助和指导企业对全业务流程进行有效运营和优化,帮助企业做出最明智的决策。在大数据时代,企业智商的基础就是形形的数据。
大数据在重新定义企业智商的同时,对企业核心资产也进行了重塑,数据资产当仁不让地成为现代商业社会的核心竞争力。在大数据时代,企业必须熟悉和用好海量的数据。与其他行业相比,互联网行业已经提早感受到了大数据带来的深切变化。当很多企业还在因为大数据对商业世界的变革无所适从时,一些互联网企业已经完成了核心竞争力的重新定义。这些互联网企业正在发生的变化,一定程度上恰恰是其他企业在大数据时代的未来。
大数据所能带来的巨大商业价值,被认为将引领一场足以与20世纪计算机革命匹敌的巨大变革。大数据正在对每个领域都造成影响,在商业、经济和其他领域中,决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉。大数据正在促生新的蓝海,催生新的经济增长点,正在成为政府和企业竞争的新焦点。
各个大企业纷纷投向大数据促生的新蓝海。甲骨文、IBM、微软和SAP共投入超过15亿美元成立各自的软件智能数据管理和分析的专业公司。甲骨文在2011年推出了Oracle大数据
机和Exalytics商务智能服务器,构建自己的大数据平台解决方案。SAP在2011年推出了HANA平台以应对大数据实时分析的挑战。据《麻省理工学院斯隆管理评论》和IBM商业价值研究院联合举行的2011年新智能企业全球高管调查和研究项目指出,2011年,58%的企业已经将数据分析技术用于在市场或行业内创造竞争优势,而2010年这一比例仅为37%。值得注意的是,采用分析技术的企业持续超越同行的可能性要高两倍。
在今天的大数据时代,商业的生态环境在不经意间发生了巨大的变化:网民和消费者的界限正在变得模糊,无处不在的智能终端,随时在线的网络传输,互动频繁的社交网络让以往只是网页浏览者的网民的面孔从模糊变得清晰,对于企业来说,他们第一次有机会进行大规模的精准化的消费者行为研究;作为保持着持续变革欲望的企业,主动地拥抱这种变化,从战略到战术层面开始自我的蜕变和进化将会让他们更加适应这个新的时代,大数据蓝海成为未来竞争的制高点。长春信息职业技术学院
大数据给信息安全带来新的挑战和机遇
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,而且带来了新机遇。
1.大数据成为网络攻击的显著目标在网络空间中,大数据成为更容易被“发
现”的大目标,承载着越来越多的关注度。一方面,大数据不仅意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者,成为更具吸引力的目标。另一方面,数据的大量聚集,使得黑客一次成功的攻击能够获得更多的数据,无形中降低了黑客的进攻成本,增加了“收益率”。
2.大数据加大隐私泄露风险
网络空间中的数据来源涵盖非常广阔的范围,例如传感器、社交网络、记录存档、等,大量数据的剧集不可避免的加大了用户隐私泄露的风险。一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录。这些数据的集中存储增加了数据泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确的界定,很多基于大数据的分析都未考虑到其中涉及到的个体的隐私问题。
3.大数据对现有的存储和安防措施提出挑战大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,例如开发数据、客户资料和经营数据存储在一起,可能会出现违规地将某些生产数据放在经营数据存储位置的情况,造成企业安全管理不合规。
大数据的大小影响到安全控制措施能否正确运行。对于海量数据,常规的安全扫描手段需要耗费过多地时间,已经无法满足安全需求。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,大数据安全防护存在漏洞。
4.大数据技术被应用到攻击手段中在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也正在利用这些大数据技术向企业发起攻击。黑客最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,为发起攻击做准备,大数据分析让黑客的攻击更精准。此外,大数据为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击,这个数量级是传统单点攻击不具备的。
>洗葡萄的方法
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论