2024学年江苏省扬州市江都区六校联考中考数学仿真试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()
A.2 B.±2 C.8 D.±8
2.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()
两会哪天结束A.B.C.D.
3.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE 交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a
=3;②当CF=1
4
时,点E的运动路程为
11
4
或
7
2
或
9
2
,则下列判断正确的是( )
A.①②都对B.①②都错C.①对②错D.①错②对
4.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()
A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨
C.本市明天下雨的可能性比较大D.本市明天肯定下雨
5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、
合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
A .2人
B .16人
C .20人
D .40人
6.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )
A .6
B .12
C .18
D .24
7.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )
A .主视图是中心对称图形
B .左视图是中心对称图形
C .主视图既是中心对称图形又是轴对称图形
D .俯视图既是中心对称图形又是轴对称图形
8.如果2a b -=,那么22b a a b a a
-+÷的值为( ) A .1 B .2
C .1-
D .2- 9.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<;时,y 0<;
2a b 0+=④,其中错误的结论有( )
A .②③
B .②④
C .①③
D .①④
10.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()
A.25B.35C.5 D.6
11.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()
A.2、40 B.42、38 C.40、42 D.42、40
12.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A.40海里B.60海里C.70海里D.80海里
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分式方程32x
x2
-
-
+
2
2x
-
=1的解为________.
14.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
15.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为23,则a的值是_____.
16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在
边DE上,反比例函数
k
y
x
=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.
17.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.
18.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数y=k
x
的图象上.
(1)求反比例函数y=k
x
的表达式;
(2)在x轴上是否存在一点P,使得S△AOP=1
2
S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的
理由.
20.(6分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:A
D·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
21.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B 种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
22.(8分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
23.(8分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论