2022年中考数学三轮复习:圆
一.选择题(共10小题)
1.(2021•鹿城区校级三模)如图,在⊙O中,将劣弧BC沿弦BC翻折恰好经过圆心O,A是劣弧BC上一点,分别延长CA,BA交圆O于E,D两点,连接BE,CD.若tan∠ECB=,记△ABE的面积为S1,△ADC的面积为S2.则=( )
A. B. C. D.
2.(2021•安徽模拟)如图,⊙O的半径为2,定点P在⊙O上,动点A,B也在⊙O上,且满足∠APB=30°,C为PB的中点,则点A,B在圆上运动的过程中,线段AC的最大值为( )
A.2+ B.1+ C.2+ D.2﹣2
3.(2021•武汉模拟)如图,AB为⊙O的直径,点C为半圆上一点且sin∠CAB=,点E、F分别为、的中点,弦EF分别交AC,CB于点M、N.若MN=,则AB=( )
A.10 B.10 C.18 D.6
4.(2021•自贡)如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部分)面积的最大值是( )
A.π B.π C.π D.π
5.(2021•泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是( )
A. B. C. D.
6.(2021•连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则△AMN周长的最小值是( )
A.3 B.4 C.5 D.6
7.(2021•武汉模拟)如图,AB是⊙O的直径,BC是弦,D是OB的中点,F是⊙O上一点,连接DF,AC⊥DF于点E,若BC=,OD=ED,则DF的长是( )
A.+1 B. C.+1 D.
8.(2021•盐田区模拟)如图,已知M(0,2),A(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD.给出4个说法:①BC=2OD;②∠ODA=45°;③当线段OD取得最大值时,点D的坐标为(1,1+);④当点C在上运动时,点D的运动路径为π.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
9.(2021•湖南模拟)如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正确的是( )
A.①②④ B.①②③ C.②③④ D.①③④
10.(2021•香洲区二模)如图,AB是⊙O的直径,∠ACB的平分线交⊙O于点D,连接AD,BD,给出下列四个结论:①∠ACB=90°;②△ABD是等腰直角三角形;③AD2=DE•CD;④AC+BC=CD,其中正确的结论是( )
A.①②③ B.①②④ C.①③④ D.①②③④
二.填空题(共5小题)
11.(2021•牧野区校级三模)如图,在Rt△ABC中,∠A=30°,BC=2,点O为AC上一点,以O为圆心,OC长为半径的圆与AB相切于点D,交AC于另一点E,点F为优弧DCE上一动点,则图中阴影部分面积的最大值为 .
12.(2021•缙云县一模)我国古代伟大的数学家刘徽于公元263年撰《九章算术注》中指出,“周三径一”不是圆周率值,实际上是圆内接正六边形周长和直径的比值(图1).刘徽发现,圆内接正多边形边数无限增加时,多边形的周长就无限逼近圆周长,从而创立为计算圆周率建立起相当严密的理论和完善的算法,如图2,六边形ABCDEF是圆内接正六边形,把每段弧二等分,作出一个圆内接正十二边形,连接AG,CF,AG交CF于点P,若AP=2,则的长为 .
13.(2021•方城县模拟)如图所示,在扇形OAB中,∠AOB=90°,半径OA=4,点F位于的处且靠近点A的位置.点C、D分别在线段OA、OB上,CD=4,E为CD的中点,连接山东中考时间2022年具体时间EF、BE.在CD滑动过程中(CD长度始终保持不变),当EF取最小值时,阴影部分的周长为 .
14.(2021•武汉模拟)如图,⊙O内切于正方形ABCD,边AD,DC上两点E,F,且EF是⊙O的切线,当△BEF的面积为时,则⊙O的半径r是 .
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论