2022学年四川省南充市第九中学重点中学中考二模数学试题(含答案解析)
2022学年四川省南充市第九中学重点中学中考二模数学测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()
失眠的好方法
A.方有两个相等的实数根B.方程有一根等于02020高考安排时间表
C.方程两根之和等于0 D.方程两根之积等于0
2.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()
A.3
2
cm B.3cm C.23cm D.9cm
3.不等式组
12
342
x
x
+>
-≤
怎样把qq图标隐藏
的解集表示在数轴上正确的是()
A.B.C.D.
车管所网上选号4.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()
A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛
C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山
5.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x …–2 –1 0    1    2 …
y …0    4    6    6    4 …
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
6.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()
A.B.C.D.
7.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()
A.B.
C.D.
8.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()
A .
B .
C .
D .
9.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是(  )
bno护照是什么意思A .y =2x 2+3
B .y =2x 2﹣3
C .y =2(x+3)2
D .y =2(x ﹣3)2
10.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是(  )
A .
B .
C .
D .
二、填空题(共7小题,每小题3分,满分21分)
11.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为_________海里.(结果保留根号)
12.分解因式:22
x y -=_______________. 13.已知,正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm (结果保留π).
14.将161000用科学记数法表示为1.61×10n,则n的值为________.
15.化简:
1
m
m
-
÷
2
1
m
m
-
时光荏苒是什么意思=_____.
16.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.
17.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,BG=42,则△CEF 的周长为____.
三、解答题(共7小题,满分69分)
18.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
19.(5分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想
的等式正确性.
20.(8分)已知抛物线,2
:3L y ax bx =+-与x 轴交于()1,0A B -、两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =.
(1)抛物线的表达式;
(2)若抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 与x 轴交于点','A B 两点(点'A 在点'B 左侧),要使'2ABC A BC S S ∆∆=,求所有满足条件的抛物线'L 的表达式.
21.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
(1)求购进甲、乙两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?
22.(10分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该标牌上端C 处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).
23.(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题: 视力
频数(人) 频率 4.0≤x <4.3
20 0.1 4.3≤x <4.6
40 0.2 4.6≤x <4.9
70 0.35 4.9≤x <5.2    a 0.3

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。