2022届怀化市重点中学中考数学模拟预测试卷
中国女排第四次全胜夺冠考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )
A.6 B.7 C.8 D.9
2.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
A. B. C. D.
3.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
A. B. C. D.
4.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
A.2人 B.16人
C.20人 D.40人
魔兽字体6.﹣0.2的相反数是( )
A.0.2 B.±0.2 C.﹣0.2 D.2
7.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=( )
A.2:3 B.4:9 C.2:5 D.4:25
8.如图,点A所表示的数的绝对值是( )
哪些水果可以降火A.3 B.﹣3 C. D.
9.函数的图象上有两点,,若,则( )
A. B. C. D.、的大小不确定
10.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )
A.第一、二、三象限 B.第二、三、四象限
C.第一、三、四象限 D.第一、二、四象限
11.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
12.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是( )
梅花的寓意A.S的值增大 B.S的值减小
C.S的值先增大,后减小 D.S的值不变
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.
14.土库曼斯坦达尔瓦扎天然气坑洞从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是 .
15.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.
16.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生
中“综合素质”评价结果为“A”的学生约为_____人.
17.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)
18.分解因式:x3y﹣2x2y+xy=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
20.(6分)解不等式组:
21.(6分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
(1)求证:四边形OCAD是平行四边形;
(2)填空:①当∠B=nikke胜利女神 时,四边形OCAD是菱形;
②当∠B= 时,AD与相切.
22.(8分)(1)解方程:=0;
(2)解不等式组 ,并把所得解集表示在数轴上.
23.(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.
24.(10分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论