一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合曲阜师范大学录取查询,,则中元素的个数为( )
A. 2 B. 3 C. 4 D. 6
2.复数虚部是( )
A. B. C. D.
3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为
A.2 B. C.4 D.
4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据和小数记录法的数据满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为
A.1.5 B.1.2 C.0.8 D.0.6
5.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )
A. B. C. D.
6.已知向量a,b满足,,,则( )
A. B. C. D.
7.设双曲线C:(a>0,b>0)左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则怎么发信息a=( )
A. 1 B. 2 C. 4 D. 8
8.设函数的定义域为,为奇函数,为偶函数,当,时,.若(3),则
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据,,,,由这组数据得到新样本数据,,,,其中,2,,,为非零常数,则
A.两组样本数据的样本平均数相同 B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同 D.两组样本数据的样本极差相同
10.已知为坐标原点,点,,,,,则
A. B. 诗经赏析
C. D.
11.已知点在圆上,点,,则
A.点到直线的距离小于10 B.点到直线的距离大于2
C.当最小时, D.当最大时,
12.在正三棱柱中,,点满足,其中,,,,则
A.当时,△的周长为定值 B.当时,三棱锥的体积为定值
C.当时,有且仅有一个点,使得
D.当时,有且仅有一个点,使得平面
二、填空题:本题共4小题,每小题5分,共20分.
13.曲线在点处的切线方程为
14.的展开式中常数项是__________(用数字作答).
15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
16.关于函数f(x)=有如下四个命题:
①f(x)的图像关于y轴对称.
②f(x)的图像关于原点对称.
③f(x)的图像关于直线x=对称.
④msxmlf(初婚均龄28.67岁x)的最小值为2.
其中所有真命题的序号是__________.
四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤。)
17已知函数.
(Ⅰ)若,求的值;
(Ⅱ)若函数图象上所有点的纵坐标保持不变,横坐标变为原来的倍得函数的图象,且关于的方程在上有解,求的取值范围.
18.已知公比大于的等比数列满足.
(1)求的通项公式;
(2)求.
19.如图,在四棱柱中,底面是边长为2的菱形,,,点分别为棱,的中点.
(1)求证:平面;
(2)若,二面角的余弦值为,求直线与平面所成角的正弦值.
20.
1.2022年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作、9:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:10点04分,记作时刻64.
(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆
车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列;
(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T洗衣服服从正态分布,其中可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
附:若随机变量T服从正态分布,则,,.
21.已知椭圆过点,椭圆四个顶点围成的四边形面积为.
(1)求椭圆的标准方程;
(2)过点的直线斜率为,交椭圆于不同的两点,直线,交于点,若,求的取值范围.
22.已知函数,.
(1)当时,求的极值;
(2)当时,求函数极大值的最小值.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论