关于商业数据分析,很多人不知道的四大进阶能力
关于商业/数据分析,很多人不知道的四大进阶能力
怎么装修淘宝店铺一般来说,大部分商业/数据分析师都会在工作中遇到不同阶段性的瓶颈:
第一阶段:工作时间被取数的工作安排得满满当当,根本没有时间做有价值的“分析”的工作;
第二阶段:即使在公司已经呆了一两年,面对海量的数据,除了对指标的分析外,对数据没有任何思路;
第三阶段:当你做出了你认为有价值的数据分析,高层领导也只是看一看,并没有后续的安排;
第四阶段:头像红旗最后你的数据分析得到高层的认可,但是放到业务部门去推动,没有任何反馈。
总而言之,商业/数据分析师也太难了...
以下这篇文章主要总结从一个BI工程师做到数据总监的关键点,也针对以上四个阶段瓶颈,需要做出的行动的分享。如果你能把我以下所说的行动都能做到,深柜那你离成为一名数据
负责人应该就不远了。如今通过数据分析助力业务部门的决策和发展,这已经是每一个数据分析人员乃至于业务部门的基本共识了。然而,虽然道理人人都懂,但真正能够做到的却不多。究其原因,无非是以下四点没有做好:
一、教师节搞笑短信没有站到领导的高度来看待问题
一名数据分析人员其自身所站的高度,直接决定了他进行数据分析的方向和影响力。就好比打仗,业务领导看的是大势,是全局。而你作为一个参谋,天天只关注一城一地的得失,即便你能力再强,分析的再透彻,在领导看来也不过是一点而已,想要通过这样的分析来影响业务的全局发展无疑是痴人说梦。
因此,一名优秀的数据分析人员,首先需要能够和领导站到一个高度。你需要知道整个公司的业务战略,需要了解本部门在战略中的定位和规划。只有站在这个高度,你才能知道业务领导关心什么,整个战局的重点在哪里,会有哪些问题和指标需要特别关注,这样你才有可能进行体系化的数据分析。这种体系化的数据分析与针对某个业务指标的分析最大的不同,在于各个分析之间有着明确的关联关系,仅通过数据就可以让业务领导对全局洞若观火。任何一个领导看到这样体系化的工具都一定会爱不释手,毕竟这会成为他们把控
全局最简便的工具。一旦让业务领导依赖上数据工具,后期的分析结果和建议势必会得到他的重视,这样通过数据来推动业务发展就变的水到渠成。(这里的工具不特指软件,一个模型也是一个工具)
我和很多数据分析人员进行沟通时,他们往往关注在一个工具怎么用,一个算法怎么实现这样的细节点上。这些技能当然重要,但最终真正决定一名分析师高度的其实是他的眼界和思想的高度。
需要的行动:
Ø 主动参加高层领导的会议,从各个层面积极沟通,主动了解公司战略规划以及部门定位;
Ø 多与业务部门核心团队进行沟通,了解其当前的关注点以及后期的整体战略方向和动态;
Ø 深入了解所在部门的业务,同时主动了解行业内竞争对手或领头羊的行业动态,整理并汇总形成自己的见解;
Ø 如果你无法达到业务领导的高度,就更要多和他沟通,了解他的想法和眼界,站在他的肩膀之上。永远记住,当你带着想法,拿着数据,主动的与业务领导进行沟通时,业务领导一定是欢迎的。毕竟他所承担的压力多一个人分担总是好的,更何况是一个有想法,积极主动的人。记住,态度永远是最重要的!
二、是很好的"实现者",而不是很好的"思考者"
我接触过的很多数据分析人员,喜欢把自己定位成为业务部门的数据"实现者"。确切来说,就是把自己定义为基于业务需求实现报表或看板的实施人员。我认为,这是非常错误和不可取的。
在我看来,基于业务人员想法来制作报表或者看板,最多只是"60分工作"。即便你的需求来源是业务部门老总,也就值60分。何为"60分工作"?就是刚刚满足温饱的工作,让你能赚这份工资,但无法凸显你的价值,无法让你升职加薪。其实数据分析最值钱的就是想法,特别是基于实际业务现状有针对性的想法。如果这些想法来源都是业务人员,那你就是一个"IT民工",只是一个比电脑高级一点的工具而已。所以,作为一名数据分析师,你一定要有自己对业务独到的见解和想法,要成为一名“思考者”。通过你拥有的数据对这些想
法进行系统化、体系化的分析,通过数据来论证自己的想法。这是一个很痛苦、很费时的工作。在我过去的经验中,往往10个想法里才有1个是靠谱的,可被论证的。但是,当你把这一个被数据证明的想法抛出来时,一定会让业务人员眼前一亮,对于任何人来说,一个有思想的人提出的建议都一定会更容易让人接受。
服务好业务人员是无可厚非的,但作为一名数据分析师,绝对不能仅限于此。你一定要了解业务,提出想法/假设,并通过数据来论证。当你在业务人员的眼中摘掉“IT民工”的帽子,换上“思考者”的王冠时,你才真正踏上数据推动业务发展的康庄大道。
需要的行动:
Ø 千万不要固步自封,如果你已经把自己定位成一个“IT民工”,永远不会有人把你当成“思考者”;
Ø 不要把自己的视野仅仅局限于你服务的业务领域,多去了解一些其他业务部门和行业中的动态,要知道,他山之石可以攻玉。有时候跳出圈子多看一些东西,才会让你比圈子里的人想的更多;
Ø 与业务同事多沟通,有时候将不同人的意见综合起来做提炼,也是形成你独特想法的一种捷径;
Ø 当形成自己想法时,要主动通过数据去验证,不要怕失败。得到的结论也不要妄自菲薄,要勇于表达自己的观点;
琐组词语Ø 不管失败多少次,永远有勇气站起来做下一次的尝试,要做打不倒的小强!
二十大开幕式时间三、缺少汇报的技巧和经验,往往是茶壶煮饺子,有料倒不出来
目前行业内的数据分析师,大多数还是偏向理工科的同学。这部分同学逻辑思维能力没的说,但最大的问题还是在于表达。
数据分析师是一个与业务贴的很近的职业,即便你上面两点都能够很好的达到要求,但最终还是需要拿给业务人员来用的。这个时候除了好的想法外,优秀的表达和汇报能力就成为关键因素。从我和多位数据分析师的接触来看,大家最大的问题是不会“讲故事”。何为"讲故事"?就是把你研究出来的算法,看板,报表等与实际业务场景结合起来,通过一个个生动的故事来体现你工作的价值。我之前参加过不少数据分析师的汇报,他们在和业
务人员汇报的时候更多的是讲自己的工具怎么操作,各个业务指标的含义,其中背后的算法等等。而对于使用场景,业务含义,业务价值涉猎很少,即便有提到的也是平铺直叙,让人感觉很突兀。要知道,对于业务人员来说,你这样的讲解会让大家云里雾里,直接影响到对你提供工具的使用效果。
比较好的演讲,应该是先抛出目前业务出现的问题,然后逐层剖析到问题关键,再给出工具,结合历史的业务数据进行操作,指出使用工具如何能够及早发现问题,提升业务效率等。基于实际业务的痛处,通过讲故事的方式进行宣讲,会让听众感同身受,也激起他们使用工具的欲望和兴趣。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。