黄金分割0.618的来历
有一个在经济生活、科学研究中都很有用的数——0.618,由它决定了一种最优化方法。使用它,人们节约了大量的时间、财力和物力,当人们探讨它的来历时才发现它竟是一种纯数学思考的产物!纯数学思考的产物怎么会那么符合实际?这就是这个数中所包含的一个美丽的谜语。
欧多克斯的“中外比”
欧多克斯是公元前4世纪的希腊数学家,他曾研究过大量的比例问题,并创造了比例论。在研究比例的过程中,有一次提出这样一个问题:能否将一条线段分为不相等的两部分,使较长部分为原线段和较短部分的比例中项?
他通过研究发现,可以将一已知线段分为两段,使之满足长线段与短线段之比等于全线段与长线段之比,即长线段为全线段与短线段的比例中项。若设已知线段为AB,点C将AB分割成AC、BC,AC>BC,且AC^2=AB·CB,那么分点C就是线段AB的黄金分割点.
于是,欧多克斯将这种比专称为“中外比”。在数学史上,是欧多克斯首先提出的中外比,
不过希腊人发现中外比要更早一些。神秘的毕达哥拉斯学派曾以五角星形为其标志,五角星形的作图中就包含着中外比。雅典的巴特农神殿是古希腊的一大杰作,这座建造于公元前5世纪的神殿的宽与高之比就恰恰符合中外比。
中外比后来被世人通称为“黄金分割”,虽然最先系统研究黄金分割的是欧多克斯,但是,它究竟起源于何时、何故呢?
黄金分割的起源
人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。
五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星日文签名”都画成五角形。现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。
五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。古希腊的毕达哥拉斯学派用五角星
形作为他们的徽章或标志,称之为“健康”。可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分割的方法。现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。
系统论述黄金分割的最早记载是欧几里得的《几何原本》,在该书第四卷中记述了用黄金分割作五边形、十边形的的问题,在第二卷第11节中详细讲了黄金分割的计算方法,其中写道:“以点H按中末比截线段AB,使AB∶AH=AH∶HB”将这一式子计算一下:设AB=1,AH=x,则上面等式18,点H是AB的黄金分割点,0.618叫做“黄金数”。
在《几何原本》中把它称为“中末比”。直到文艺复兴时期,人们重新发现了古希腊数学,并且发现这种比例广泛存在于许多图形的自然结构之中,因而高度推崇中末比的奇妙性质和用途。意大利数学家帕乔利称中末比为“神圣比例”;德国天文学家开普勒称中末比为“比例分割”,并认为勾股定理“好比黄金”,中末比“堪称珠玉”。最早在著作中使用“黄金分割”这一名称的是德国数学家M·欧姆,他是发现电学的欧姆定律的G·S·欧姆的弟弟。他在自己的著作《纯粹初等数学》(第二版,1835)中用了德文字:“dergoldeneschnitt(黄金分割)”来表述中末比,以后,这一称呼才逐渐流行起来。
黄金分割与“兔子问题”
斐波那契是13世纪欧洲著名的数学家,他是意大利人。1202年出版的他的著作《算盘书》向欧洲人介绍了东方数学。这部书1228年修订本中引入了一个“兔子问题”。该题要求计算由一对兔子开始,一年后能繁殖多少对兔子。题中假定,一对兔子每一个月可以生一对小兔,而小兔出生的第二个月就能生新的小兔,这样开始时是一对,一月后成为2对,两月后3对,三个月后5对,……每个月的兔子对数排成一个数列:
1,2,3,5,8,13,21,34,55,89,144,233,377,……叫“斐波那契数列”,其构造是从第3项起,每一项是前两项之和,即:fn=fn-1+fn-2(n≥3),fn表示第n项。如果用G表示黄金分割数,这些比值越来越接近G,事实上,以G为极限。
这一有趣的性质非常奇特:由两个完全不同的数学领域来的问题得出了共同的结果。两者之间神奇的联系,使黄金分割更具神秘感和迷人的魅力。
三清四帝黄金分割的启示
随着社会的发展,人们发现黄金分割在自然和社会中有着极其广泛的应用。例如,优选
法中有两种方法与黄金分割就有关。其一就是本文开始时指出的“0.618法”,它是美国数学家基弗于1953年提出的一种优选法,从1970年开始在我国推广,取得很好的经济效益。在现代最优化理论中,它能使我们用较少的实验到合适的工艺条件和合理的配方。虽然G是一个无理数,0.168是它的一个近似值,但在实际中使用已足够精确。其二是分数法,它取的也是G的近似值,但不是0.618而是G的连分数展开式的渐近分数,也就是采用某一个“斐波那契数列”分数。
黄金分割运用也表现出数学发展的一个规律。它表明研究和发展数学理论是十分重要的。纯理论的发展对实践的作用也许不是直接的,但它所揭示的自然规律必将指导人们的社会实践。因此一方面我们遇到问题应该寻数学方法解决,另一方面,我们也应为纯数学理论开辟应用领域。
此外,对“黄金分割”的神秘性附会的现象也是存在的。比如黄金分割与“美”的关系,有人说:用黄金分割所得的两段作边的矩形(即两边之比=G的矩形)是最美的。这是没有充分根据的,专家在做社会调查中也否定了这一结论。因此“你能不能再爱我一遍像以前黄金矩形最美”的结论是不确定的。由此推出的许多推测自然也是不可靠的。又比如说,人体的各部分长度(如从头顶到肚脐,由
肚脐到脚跟)的比合于黄金分割比例才是最美的;建筑物的各部分的比例合乎黄金比例才是最美的等等。这些说法多半是牵强附会。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样qq 直播,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增添辉。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“语言表达训练学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。 母亲节送什么礼物给妈妈比较好手工还有说乐器弦长的比等于黄金比,弹奏出的声音就和谐悦耳,也是一种误解,实际上,调和乐音的弦长必须成简单比,而黄金比是一个无理数!
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论