第2课时 平行四边形的判定(2)
1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)
2.掌握中位线的定义及中位线定理;(重点)
3.平行四边形性质与判定的综合运用.(难点)
一、情境导入
如图所示,吴伯伯家一块等边三角形ABC的空地,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?
二、合作探究
探究点一:一组对边平行且相等的四边形是平行四边形
【类型一】 判定四边形是平行四边形
如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB.根据“一组对边平行且相等的四边形是平行四边形”可证出结论.
解:四边形ABCD是平行四边形.理由如下:∵DF初二下册数学试卷∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.
方法总结:根据题设条件,通过证明三角形全等,得出等量关系,继而证明四边形是平行四边形是判定时的一般解题思路.
【类型二】装货单 判定平行四边形的条件
名牌音响四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
解析:①②组合可根据“一组对边平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;③④组合可根据“对角线互相平分的四边形是平行四边形”判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用“一组对边
平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用“一组对边平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;综上有4种可能使四边形ABCD为平行四边形.故选B.
方法总结:熟练运用平行四边形的判定定理是解决问题的关键.
探究点二:三角形的中位线
【类型一】 利用三角形中位线定理求线段的长
如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为( )
A.
B.3
C.6
D.9
解析:∵D、E分别为AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠2=∠3.又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选C.
方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.
【类型二】 利用三角形中位线定理求角
如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )
A.80° B.90°
C.100° D.110°
解析:∵C、D分别为EA、EB的中点,∴CD是△EAB工牌的中位线,∴CD∥AB,∴∠2=∠ECD.∵∠1=110°,∠E=30°,∴∠2=∠ECD=80°.故选A.
方法总结:中位线定理涉及平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.
【类型三】 运用三角形的中位线性质进行计算
如图,在△ABC中,AB=5,AC=3,点N为BC的中点,AM平分∠BAC,CM⊥AM,垂足为点M,延长CM交AB于点D,求MN的长.
解析:首先证明△AMD≌△AMC,得到DM=MC,易得MN为△BCD的中位线,即可解决问题.
解:∵AM平分∠BAC,CM⊥AM,∴∠DAM=∠CAM,∠AMD=∠AMC.在△AMD与△AMC中,∴△AMD≌△AMC(ASA),∴AD=AC=3,DM=CM.又∵BN=CN,∴MN为△BCD的中位线,∴MN=BD=×(5-3)=1.
方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.
【类型四】 中位线定理的综合应用
如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.
解析:本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.
解:AB∥OF,AB=2OF.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OA=OC,∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,∴AB=CE.在△ABF和△ECF中,∴△ABF≌△ECF(ASA),∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB∥OF,AB=2OF.
方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.
三、板书设计
1.平行四边形的判定定理(2)
一组对边平行且相等的四边形是平行四边形.
2.三角形的中位线
三角形的中位线平行于第三边,且等于第三边的一半.
本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.
八年级下学期数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.)
1.下列是最简二次根式的为( )
A. B. C. D.(a>0)
2.在方差公式中,下列说法不正确的是( )
A.n是样本的容量 B.xn是样本个体
C.是样本平均数 D.S是样本方差
3.下列计算结果正确的是( )
A.+= B.3﹣=3 C.×= D.=5
4.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )
A.2 B.﹣2 C.±2 D.任意实数
5.如果三条线段a、b、c满足a2=(c+b)(c﹣b),那么这三条线段组成的三角形是( )
A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定
6.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是( )
7.若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为( )
A.(﹣4,6) B.(4,6) C.(4,﹣6) D.(﹣4,﹣6)
8.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
A.16 B.15 C.14 D.13
9.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,且这两个正方形的边长都为2.若正方形A1B1C1O绕点O转动,则两个正方形重叠部分的面积为( )
A.16 B.做账报税4 C.1 D.2
10.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
二、填空题(本大题共5个小题;每小题3分,共15分,)
11.将直线y=﹣2x+3向下平移2个单位得到的直线为 .
12.若已知a、b为实数,且+2=b+4,则a+b= .
13.如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F海南风景分别是三边的中点,若AF=3cm,则DE= cm.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论