光交换技术 |
光分组交换技术 |
第九组: 邓傲 白杨 王琰 |
光交换技术
08光信 第九组
摘要:光交换技术是指不经过任何光/电转换,在光域直接将输入光信号交换到不同的输出端。光交换技术可分成光路光交换技术和分组光交换技术。光路交换系统所涉及的技术有空分交换技术、时分交换技术、波分/频分交换技术、码分交换技术和复合型交换技术,其中空分交换技术包括波导空分和自由空分光交换技术。光分组交换系统所涉及的技术主要包括:光分组交换技术,光突发交换技术,光标记分组交换技术,光子时隙路由技术等。
关键字:光交换技术 光/电转换 码分交换技术 复合型交换技术 光分组交换 光突发交换技术 光标记分组交换技术 光子时隙路由技术
正文:
光交换技术是指不经过任何光/电转换,在光域直接将输入光信号交换到不同的输出端。光交换技术可分成光路光交换技术和分组光交换技术,前者可利用OADM、OXC等设备来实现,而后者对光部件的性能要求更高。由于目前光逻辑器件的功能还较简单,不能
完成控制部分复杂的逻辑处理功能,因此国际上现有的分组光交换单元还要由电信号来控制,即所谓的电控光交换。随着光器件技术的发展,光交换技术的最终发展趋势将是光控光交换。
光路交换系统所涉及的技术有空分交换技术、时分交换技术、波分/频分交换技术、码分交换技术和复合型交换技术,其中空分交换技术包括波导空分和自由空分光交换技术。光分组交换系统所涉及的技术主要包括:光分组交换技术,光突发交换技术,光标记分组交换技术,光子时隙路由技术等。
课堂上老师已经讲了空分、时分、波分交换技术,下面介绍其它的光交换技术:
码分光交换, 是指对进行了直接光编码和光解码的码分复用光信号在光域内进行交换的方法。所谓码分复用, 就是靠不同的编码来区分各路原始信号, 而码分光交换则是由具有光编解码功能的光交换器将输入的某一种编码的光信号变成另一种编码的光信号进行输出, 由此来达到交换目的。随着光码分复用(OCDMA ) 技术的发展, 码分光交换技术必将得到迅速的发展和应用。
复合型交换技术,由于各种光交换技术都有其独特的优点和不同的适应性,将几种光交换技术合适地复合起来进行应用能够更好地发挥各自的优势, 以满足实际应用的需要。已见介绍的复合型光交换主要有: (1) 空分/时分光交换系统不换号转运营商; (2) 波分/空分光交换系统; (3) 频分/时分光交换系统; (4) 时分/波分/空分光交换系统等。例如, 将时分和波分技术合起来可以得到一种极有前途的大容量复合型光交换模块, 其复用度是时分多路复用度与波分复用度的乘积。如果他们的复用度分别为8, 则可实现64 路的时分2波分复合型交换。将此种交换模块用于4 级链路连接的网络, 可以构成最大终端数为4096 的大容量交换网络。
分组交换也称包交换,它是将用户传送的数据划分成一定的长度,每个部分叫做一个分组。在每个分组的前面加上一个分组头,用以指明该分组发往何地址,然后由交换机根据每个分组的地址标志,将他们转发至目的地,这一过程称为分组交换。进行分组交换的通信网称为分组交换网。从交换技术的发展历史看,数据交换经历了电路交换、报文交换、分组交换和综合业务数字交换的发展过程。分组交换实质上是在“存储—转发”基础上发展起来的。它兼有电路交换和报文交换的优点。分组交换在线路上采用动态复用技术传送按一定长度分割为许多小段的数据—分组。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组。把来自用户发端的数据暂存在交换机的存储器内,接着
在网内转发。到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。分组交换比电路交换的电路利用率高,比报文交换的传输时延小,交互性好。光分组交换(ops)技术,它以光分组作为最小的交换颗粒,数据包的格式为固定长度的光分组头、净荷和保护时间三部分。在交换系统的输入接口完成光分组读取和同步功能,同时用光纤分束器将一小部分光功率分出送入控制单元,用于完成如光分组头识别、恢复和净荷定位等功能。光交换矩阵为经过同步的光分组选择路由,并解决输出端口竞争。最后输出接口通过输出同步和再生模块,降低光分组的相位抖动,同时完成光分组头的重写和光分组再生。光分组交换技术独秀之处在于:大容量、数据率和格式的透明性、可配置性等特点,支持未来不同类型数据 ;能提供端到端的光通道或者无连接的传输 ;带宽利用效率高,能提供各种服务,满足客户的需求。把大量的交换业务转移到光域,交换容量与WDM传输容量匹配,同时光分组技术与OXC、MPLS等新技术的结合,实现网络的优化与资源的合理利用因而,光分组交换技术势必成为下一代全光网网络规“宠儿”。 光分组技术也存在着制约因素,光分组交换的关键技术有光分组的产生、同步、缓存、再生,光分组头重写及分组之间的光功率的均衡等。光分组交换技术与电分组技术相比,光分组交换技术经历了近10年的研究,却还没有达到实用化,主要有两大原因:第一是缺乏深度和快速光记忆
器件,在光域难以实现与电路由器相同的光路由器;第二是相对于成熟的硅工业而言,光分组交换的集成度很低,这是由于光分组本身固有的限制以及这方面工作的不足造成的。通过近期的技术突破与智能的光网络设计,可充分地利用光与电的优势来克服这些不利因素。其中,熟为人知的ATM技术就是分组交换中的一种。
光突发交换技术(OBS)(optical burst switching),它的特点是数据分组和控制分组独立传送,在时间上和信道上都是分离的,它采用单向资源预留机制,以光突发作为最小的交换单元。obs克服了ops的缺点,对光开关和光缓存的要求降低,并能够很好的支持突发性的分组业务,同时与ocs相比,它又大大提高了资源分配的灵活性和资源的利用率。被认为很有可能在未来互联网中扮演关键角 。OBS结合了光电路交换和光分组交换的优势,同时避免了它们的缺点。通过控制与数据在时间和空间上的分离,控制分组提前发送,并在中间节点经过电信息处理,从而为数据分组预留相应的资源。而数据分组随控制分组之后传送,在中间节点通过预留好的资源直通,无需光/电/光处理。 同时它具有延时小(单向预留),带宽利用率(统计复用),效率高,交换灵活、数据透明、交换容量大(电控光交换)等特点,可以达到Tb/s级的交换容量,甚至Pb/s量级。因此,OBS网络主要应用于不断发展的大型城域网和广域网,它可以支持传统业务,如电话、SDH、IP、FDDI和ATM等,也可以
支持未来具有较高突发性和多样性的业务,如数据文件传输、网页浏览、视频点播、视频会议等业务。光突发交换为IP骨干网的光子化提供了一个非常有竞争力的方案。一方面,通过光突发交换可以使现有的IP骨干网的协议层次扁平化,更加充分的利用DWDM技术的带宽潜力;另外一方面,由于光突发交换网对突发包的数据是完全透明的,不经过任何的光电转化,从而使光突发交换机能够真正的实现所谓的T比特级光路由器,彻底消除由于现在的电子瓶颈而导致的带宽扩展困难。此外,光突发交换的QoS支持特征也符合下一代 Internet的要求。因此,光突发交换网络很有希望取代当前基于ATM/SDH架构和电子路由器的IP骨干网,成为下一代光子化的Internet骨干网。作为一项具有广泛前景和技术优势的交换方式,光突发交换技术已引起了国内外众多研究机构的关注,我国的863计划已将光突发交换技术列为重点资助项目。从应用的角度,光突发交换还有一些重要的课题需要研究。突发封装,突发偏置时延的管理,数据和控制信道的分配,QoS的支持,交换节点光缓存的配置 如果需要的话等问题还需要作深入研究。对于光突发交换网来说,在边缘路由器光接收机上的突发快速同步也是对系统效率有重要影响的问题。
光标记分组交换(ompls)技术,也称为gmpls或多协议波长交换(mpλs).它是mpls技术与光网络技术的结合。mpls是多层交换技术的最新进展,将mpls控制平面贴到光的波长路
由交换设备的顶部就具有mpls能力的光节点。由mpls控制平面运行标签分发机制,向下游各节点发送标签,标签对应相应的波长,由各节点的控制平面进行光开关的倒换控制,建立光通道。2001年5月ntt开发出了世界首台全光交换mpls路由器,结合wdm技术和mpls技术,实现全光状态下的ip数据包的转发。 为了能适应未来智能光网络动态地提供网络资源和传送信令的要求,我们需要对传统的MPLS进行扩展和更新。OMPLS正是MPLS向光网络扩展的产物,它在支持传统的分组交换、时分交换、波长交换和光纤交换的同时,还对原有的路由协议、信令协议作了修改和扩展。
光子时隙路由 (PSR)( Photonic Slot Routing) 技术,按照PSR原理,用户的分组数据在被连带交换的所有波长上的相同时隙(光子时隙)内传输,交换节点将每一个时隙作为一个整体来看待,而无需在不同的分立波长上执行分组的变换或接入。从一个节点到另一个特定节点的分组数据,首先在该节点上被分配到可用波长上的一个特定的时隙中,以便被正确传输到目的节点。注意,该时隙就是专门被指定要去那个特定目的瑞节点的一个特定时隙。如果一个时隙没有被特殊标定为是去哪一个目的瑞的,那么它会破由某一种公平流量控制协议所指配的第一次在该时隙中传输的分组来标定其目的地址。在这种技术中还可以使用交换延迟线技术来解决冲突问题。从本质上讲,PSR分组交换方案将沉重的波长选择交换
负担转化到在源节点发现一种有效的接入协议这个问题上来了。
现状和前景:
对光交换的探索始于20世纪70年代,80年代中期发展比较迅速。首先是在实验室对各种光基本器件进行了技术研究,然后对构成系统进行了研究。目前对光交换所需器件的研究已具有相当水平。在光器件技术推动下,光交换系统技术的研究也有了很大进展。第一步进行电控光交换,即信号交换是全光的,而光器件的控制仍由电子电路完成。目前实用系统大都处于这一水平,相关成果报道得也比较多。第二步为全光交换技术,即系统的逻辑、控制和交换均由光子完成。关于这方面的报道还较少。
随着B-ISDN技术的发展,各国对光交换的关注日益增加。许多国家都在致力于光交换技术的研究与开发,其中美国ATM贝尔研究所,日本NEC和NTF、德国HHI、瑞典爱立信公司等研究机构对光交换的研究水平较高,主要涉及6种交换方式以及光互联、全光同步、光存储器和光交换在B-ISDN中的应用等领域。光交换领域急需研究开发的课题有:光互联、光交换、光逻辑控制及光综合通信网的结构。
我国在“七五”期间就开展了光交换技术的研究,并将光交换技术列为“八五”、“九五”期间的高科技基础研究课题。1990年,清华大学实现了我国第一个时分光交换(34 M/s)演示系统。1993年,北京邮电大学光通信技术研究所研制出光时分交换网络实验模型。
目前,光交换技术市场日益成熟,价格也在迅速下降。许多运营商,比如 Global Crossing、法国电信和日本电信等都已经计划在他们的网络中广泛采用光交换技术。北京市通信公司宣布采用北电网络的 OPTera DX光交换机完成了长途光传输系统工程,升级后的网络已投入商业服务。
如今,世界上许多发达国家进行了光分组交换网的研究,如欧洲RACD计划的ATMOS项目和ACTS计划的 KEOPS项目,美国DARPA支持的POND项目和CORD项目,英国EPRC支持的WASPNET项目,日本NTT光网络实验室的项目等。但是,光分组交换网的实用化取决于一些关键技术的进步,如光标记交换、微电子机械系统(MEMS)、光器件技术等。目前,光器件技术中固态光交换技术已开始迅速发展,利用固态交换技术,交换速度可以在纳秒的范围之内,这样高的速度主要用于光的分组交换。已经有一些公司在这个方向上取得了重大进展,例如Brimcom、Lynx and NTT公司。随着光网络技术、系统技术、光器件技术的发展,光分组交换在不远的将来将会走向实用化。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论