有理数
整数和分数统称为有理数,任何一个有理数都可以写成分数 任何一个有理数都可以在数轴上表示。
无限不循环小数和开方开不尽的数开方根叫作无理数 ,比如π,
而无理数恰恰与它相反,有理数和无理数统称为实数
其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。
数学上,有理数是一个整数 a 和一个非零整数 b 的比,通常写作 a/b,故又称作分数。原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
有理数包括:
1)自然数:数0,1,2,3,……叫做自然数。
2)正数:比0大的数叫做正数。
3)负数:在正数前面加上“—”(读作“负”)号的数叫做负数。负数都小于0。
4)整数:正整数、0、负整数统称为整数。
5)分数:正分数、负分数统称为分数。
6)奇数:不是2的倍数的整数叫做奇数。如-3,-1,1,5等。所有的奇数都可用2n-1或2n+1表示,n为整数。
7)偶数:是2的倍数的整数叫做偶数。如-2,0,4,8等。所有的偶数都可用2n表示,n为整数。
8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等。2是最小的质数。
9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等。4是最小的合数。
10)互质数:如果两个正整数,除了1以外没有其他因数,这两个整数称为互质数,如2和5,9和13等。
……
如3,-98.11,5.72727272……,7/22都是有理数。
全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
自然数包括小数吗 有理数集是实数集的子集。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论