史上最伟大的公式:麦克斯韦方程组
史上最伟大的公式:麦克斯韦方程组
宇宙间任何的电磁现象,
皆可由此方程组解释。
——节选自《人类最美的54个公式》
实验室里,鸦雀无声。
赫兹正全神贯注地盯着两个相对的铜球,下一秒他合上了电路开关。
顿时,电的魔力开始在这个简单的系统里展现出来,无形的电流穿过装置里的感应线圈,开始对发生器的铜球电容进行充电。随着“啪”的一声,赫兹的心仿佛被提到了嗓子眼,发生器上已经产生了火花放电,接收器又是否会同时感应生出美丽的火花?
赫兹的手心早已出汗,真的有一种看不见、摸不着、玄而又玄的电磁波吗?
历史性的时刻终于到来——
瞬间,一束微弱的火花在接收器的两个小球间一跃而过!
赫兹激动地蹦了起来,是的,他胜利了!麦克斯韦的理论也胜利了!电磁波的确真真实实地存在于空间之中,正是它激发了接收器上的电火花。
万有引力般的超距作用力
很久以前,人类就对静电和静磁现象有所发现,但在漫长历史岁月里,两者井水不犯河水。
由于摩擦起电,在古希腊及地中海区域的古老文化里,早有文字记载,将琥珀棒与猫毛摩擦后,会吸引羽毛一类的物质,“电”的英文语源更是来自于希腊文“琥珀”一词。
而关于磁,中国是对磁现象认识最早的国家之一。公元前4世纪左右成书的《管子》中就有:“上有慈石者,其下有铜金。”这是对磁的最早记载。其他古籍如《山海经》、《吕氏春秋》中也可以到一些磁石吸铁现象的记载。
发现电与磁之间有着某些相似规律,则要追溯到物理学家库仑的小小野心。1785年,作为牛顿的忠实追随者,库仑正在试图变得比牛顿本人“更牛顿”,把万有引力的套路应用到静电学中,如同星球间发生万有引力的作用,两个带电球之间的作用力是否也同样遵循着平方
反比律?为此,他精心设计了一个扭秤实验,如图9-1所示,在细银丝下悬挂一根秤杆,秤杆挂有一个平衡小球B和一个带电小球A,在A旁还有一个和它一样大小的带电小球C。
A球和C球之间的静电力会使得悬丝扭转,转动悬丝上端的悬钮,进而使小球回到原来位置。在这个过程中,可通过记录扭转角度、秤杆长度的变化,计算得知带电体A、C之间的静电力大小。
图9-1 库仑扭秤实验
实验结果正如库仑所料,静电力与电荷电量成正比,与距离的平方反比关系。这一规律后来被总结为“库仑定律”。既然库仑定律与万有引力之间存在着这样惊奇地相似之处,那么,是否在磁的世界里也存在同样的情况?随后,库仑对磁极进行了类似的实验,再次证明:同样的定律也适用于磁极之间的相互作用。这就是经典磁学理论。
库仑发现了磁力和电力一样遵守平方反比律,却并没有进一步推测两者的内在联系。和当时大多数数学物理学家一样,他相信物理中的“能量、热、电、光、磁”甚至化学中所有的力都可描述成像万有引力般的超距作用力,而力的强度取决于距离。只要再努力到几条力学定律,那整个物理理论就能完整了!
库仑这种天真的想法很快就被迅速打脸,万有引力般的超距作用显然没有那么强大,但是库仑定律的提出还是为整个电磁学奠定了基础。
终成眷属的电与磁
最先发现电和磁之间联系的,是丹麦物理学家奥斯特。
1820年的奥斯特,是哥本哈根大学一位颇有魅力的教授,从不照本宣科,凡事只讲究实践是检验真理的唯一标准,所以一上课常二话不说就带着学生做实验,学生也很少翘课。有一天,他意外地在实验中发现了电流的磁效应:当导线通电流时,下方的小磁针产生偏转。
这一惊人的发现,首次将电学和磁学结合了起来。从此,电磁学蓬勃发展,有眼力的年轻人纷纷转行投身其中进行深入研究,这当中就包括数学神童——安培。
当安培得知奥斯特发现电和磁的关系时,他立马放弃了自己小有成就的数学研究,进军物理学领域,并以其野兽般的敏锐直觉,提出了我们广为熟知的右手螺旋定则,用来判断磁场方向,如图9-2所示,大拇指的方向为电流方向,四指的绕向为磁场方向。
图9-2 安培右手螺旋定则
在实验中,安培发现不仅通电导线对磁针有作用,而且两根平行通电导线之间也有作用,同向电流相互吸引,反向电流相互排斥。
万有引力常数数理本一家,在通往物理的康庄大道上,安培没有忘本,反而利用了老本行的优势,将电磁学研究真正数学化。他在1826年直接推导得到了著名的安培环路定理,用来计算任意几何形状的通电导线所产生的磁场,这一定理后来成为了麦克斯韦方程组的基本方程之一。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。