电动机效率公式
电动机效率公式
第一篇:电动机效率公式
电动机效率公式
1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ)
其中,P—是电动机轴输出功率
U—是电动机电源输入的线电压
I—是电动机电源输入的线电流
COSφ—是电动机的功率因数
2、电动机的输出功率:指的是电动机轴输出的机械功率
3、输入功率指的是:电源给电动机输入的有功功率 :
P=√3*U*I*COSφ(KW)
其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。
第二篇:电动机效率与损耗分析
第一章 电动机效率与损耗分析
异步电动机输入电功率,输出机械功率,在运行过程中产生恒定损耗和负载损耗。恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。
恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。
1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为: 磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似
于与电压的平方成正比。铁耗一般占电动机总损耗的20%~25%。
2、风摩耗也称机械损耗(何不称为“机械损耗”?),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重也增大。
3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。铜耗约占总损耗的20%~70%。
4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。这些损耗约占总损耗的10%~15%。§1-2电动机的效率
电动机的效率与损耗相对值(P)的关系如下式所示 = 1一Σ P 式中 Σ P—— 电机总损耗
Σ P =(++++ P)/Pl P1—— 电机输入功率
当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式
可求得效率为0.896,即效率提高了2.6个百分点。并由此可见,如一通用系列的效率平均值为0.87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。§1-3 端电压变动时电机的损耗
电机铭牌上电压值是电机设计时的依据,实际运行时电网上电压是波动的,我国规定低压系统中电压允许变化±10%,在一个工厂中电压变动往往超过这一范围,电压变动对电机各部分损耗有什么影响,电压调节在什么范围内变动能够节电,这是值得分析的问题。
国内外许多资料表明,电压低于额定值不超过10%,对一个系统,一个工厂往往是节电的。例如在保证供电电压合格范围内,降低配电压2—3%,无论对住宅、商业、工业负荷都起到节电的效果。工厂降压运行(-5%左右)同样能够节电,而升压(+5%左右)则增加电能消耗。当然降压范围不能太大,否则引起电动机过负荷能力降低及某些重载负荷过电流等问题。但-5%范围内,一般不会出现这些问题。
电压变化在负载不同时对电机效率影响是不同的。在重载时提高电压在一定范围(从342伏提到380伏)可以提高效率,再提(412伏)则效率反而下降。但轻载时,电压从342伏上升则效率越来越低,如何调整线路电压及个别调整电机端电压力可以达到节能的效果。
§1-4 三相电压不平衡时异步电动机运行损耗分析
由于三相负载不对称,常常引起供电电压不平衡。这不平衡电压在异步电机中产生三相不平衡电流。用对称分量法可以分成正序、负序及零序电流。当定子绕组Y接时,则零序电流为零。其中正序电流产生转矩,使电机转运,负序电流产生一反转矩,使输出转矩有所减少,当电压不平衡值小于10%时,负转矩不大,一般可以不计。但对于负序磁场在转子中产生损耗以及定子电流由于不平衡而使损耗增加必须给予关注。一般电压不平衡时,其三相相位差不能保持120度,而相位变动后,产生的负序损耗及定子铜耗增加随电压不平衡度的增大而达到不允许的结果。因而保持供电电压平衡,可以节约电能。§1-5电源频率变化对电机损耗的影响
目前各国对于电源频率允许偏差范围的规定是不同的。在实际正常运行中,日、美控制在±0.01周/秒,而我国许多缺电系统有时频率偏差超过±0.2周/秒。在电力系统网络化的今天,公共电源频率的稳定是有保证的。这里只需要考虑专用电源(比如变频电源)频率变化对电机损耗的影响。
对于风机泵类负载,由于轴转矩与转速的平方成正比变化,频率降低后,转速下降,转矩
也下降,使定子及转子电流下降,因而电机效率有所提高,再加上轴功率有大幅度下降,电机输入功率同样大幅度下降,所以风机泵类负载采用变频调速,在低速时可获得好的节能效果。[风量减小,是否允许?] §1-6 非正弦波形电源下的异步电动机损耗
大多数静止变频器的输出电压波形是非正弦的,通过傅里叶级数分析其中除基本分量外尚有大量谐波分量。这在异步电动机中产生谐波电流及谐波磁动势。与分析三相电动机磁动势空间谐波一样,可以对此分析,例如相电流中有5次时间谐波分量,则A,B及C相5次(时间)谐波磁动势分别为:
这说明5次时间谐波产生的旋转磁动势,其转速为5倍基波同步速,方向与基波旋转方向相反。同样可以证明7次谐波磁动势转速为7倍基波同步速,方向与基波旋转方向相同。§1-7电动机起停损耗
有些负载要求断续运行,停止部分时间比运行时间长得多,采用起-运-停循环运行方式(ON-OFF)有可能比负载运行-空转-负载运行节约大量能耗(即电机空载损耗乘停运时间)。但起-运-停方式,需多次起动电机,使定子绕组频繁受到冲击力,鼠笼转子也会因发热不均匀,产生热应力,多次疲劳会使转子导条断裂。起动时电机发热增多而散热条件较
稳态运行差,多次起动也会使电机过热。因此对起动次数都有规定。采用高转子电阻电机,可以减少定转子起动电流,所以可减少能耗及电流冲击影响。当然高转子电阻运行时滑差和损耗增加,应综合比较。对于大中型电动机而言,起停损耗需要考虑的因素还要多,比如电动机直接起动方式时,考虑到起动困难、对相邻设备可能造成影响等因素,管理人员往往会让电动机长时间的空转而减少电动机的起动次数,从而造成大量的能源浪费。另一方面,感应电动机的全压直接起动对电力系统短路容量的要求较高,为此电力系统必须提供更高的供电能力,用户也因此必须支付更多的费用。第三方面是电力系统长时间的运行在相对较低的符合率,系统供电效率较低。因此对于大中型电动机来说,起停损耗问题要从系统角度来周全考虑,通过改变起动方式来节约电力是一种选择。
§1-8电动机的节能潜力
1、根据统计数据可知,37kW 以上电动机数量虽少,但要承担一半以上总的电动机用电量。因为这些功率较大的电机大部份工作在高负荷,长期连续运行的状态,因此这部份电机的效率历来受到一定的重视,电机的效率水平也相应地处于较高的水平,电机功率为90kW 时效率已达0.94左右。但是应该看到小功率电机,max.book118,由于其数量
庞大,所以37kW 以下的电机也传递了近一半的电能,因此通过降低损耗提高电动机的效率对
第三篇:电动机功率因数和效率的关系
电动机功率因数和效率的关系
电动机的效率和功率因素都是三相异步电机的重要参数,在现实中我们总想着有高的机械效率,又要有高的功率因素,来提高电能的利用率。但是往往不能同时兼得?这是什么原因呢? 因为电动机的效率与功率因数是相互矛盾的。对于同一种电机,效率高,则功率因数低。反之,效率低则功率因数高。功率高,对电动机使用有好处;功率因数低,会降低电网输送效率,因为功率因数低,所以电网无功损耗大。因此对交流感应点攻击既要对效率指标提出较高要求,也要对功率因数指标提出较高要求。
电动机效率低,说明损耗大。而对于普通的三相交流电动机,损耗是阻性的,这样,损耗越大,在功率三角形中的P越大,功率因数角φ则越小,功率因数cosφ越大。反之,效率高,说明损耗小,在功率三角形中P也越小,功率因数角φ则变小,功率因数cosφ变小。为了满足电动机功率因数、效率两项指标,往往顾此失彼。
如要提高功率因数,则应减小电动机气隙,增加每相串联匝数。而要提高效率,则应增大电动机气隙,这样可减小谐波杂散损耗,因谐波杂散损耗与气隙的1.5~1.6次方呈正比。二者采取的措施刚好相反。
第四篇:电动机的效率、功率因数及其影响因素(模版)有功功率和无功功率
电动机的效率、功率因数及其影响因素
一、什么是电动机的功率因数?
异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cosψ来表示。cosψ=P/S 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。