常德市七年级数学试卷七年级苏科下册期末精选及答案
一、幂的运算易错压轴解答题
1.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?
(1)如果2×8x ×16x =229 ,求x的值;
(2)如果,求x的值.
2.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=________,(5,1)=________,(2,)=________.
(2)小明在研究这种运算时发现一个现象:(3n, 4n)=(3,4),小明给出了如下的证明:
设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n, 4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
3.综合题
(1)已知x = ,y = ,求(n为正整数)的值;
(2)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.
二、平面图形的认识(二)压轴解答题
4.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.
(1)如(图1),当AE⊥BC时,求证:DE∥AC
(2)若∠C=2∠B,∠BAD=x°(0<x<60)
①如(图2),当DE⊥BC时,求x的值.
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
5.已知,,点在射线上, .
(1)如图1,若,求的度数;
(2)把“ °”改为“ ”,射线沿射线平移,得到,其它条件不变(如图2所示),探究的数量关系;
(3)在(2)的条件下,作,垂足为,与的角平分线交于点,若,用含α的式子表示(直接写出答案).
6.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE 平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.
三、整式乘法与因式分解易错压轴解答题
7.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。
(1)图2中的阴影部分的正方形的边长是________。
(2)请用两种不同的方法表示图2中阴影部分的面积,并写出下列三个代数式:(a+b)²,(a-b)²,ab之间的等量关系;
七年级下册数学期末试卷(3)利用(2)中的结论计算:x-y=2,xy= ,求x+y的值;
(4)根据(2)中的结论,直接写出m+ 和m- 之间的关系;若m²-4m+1=0,分别求出m+
和(m- )2的值。
8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”
(1)28和2012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?
9.问题发现:小星发现把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由图1,可得到等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)类比探究:如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,通过上面的启发,你能发现什么结论?请用等式表示出来.
(2)结论应用:已知a+b+c=14,ab+bc+ac=26,求a2+b2+c2的值.
(3)拓展延伸:如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一
直线上,连接BD和BF.若这两个正方形的边长满足a+b=8,ab=14,请求出阴影部分的面积.
四、二元一次方程组易错压轴解答题
10.阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.
例:由2x+3y=12得y==4﹣ x(x,y为正整数).
∴则有0<x<6,
又∵y=4﹣ x为正整数,
∴ x为正整数.
由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.
∴2x+3y=12的正整数解为 .
问题:
(1)请你写出方程3x+y=7的一组正整数解:________.
(2)若为自然数,则满足条件的x值有 .
A.2个
B.3个
C.4个
D.5个
(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购
买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有
几种购买方案.
11.已知关于x,y的二元一次方程组(a为实数).
(1)若方程组的解始终满足y=a+1,求a的值.
(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.
①探究实数a,b满足的关系式.
②若a,b都是整数,求b的最大值和最小值.
12.如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).
(1)顶点B的坐标为________,顶点D的坐标为________(用a或b表示);
(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移________个单位长度,再向下平移________个单位长度的两次平移;
②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解________.
五、一元一次不等式易错压轴解答题
13.为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?
(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.
①求该治污公司有几种购买方案;
②如果为了节约资金,请为该公司设计一种最省钱的购买方案.
14.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金3800元,请设计几种购买方案供这个学校选择.(两种规格的书柜都必须购买)
15.某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.
(1)九年级师生表演的歌唱类与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目演出的平均用时分别为5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多有多少个?
【参考答案】***试卷处理标记,请不要删除
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论