2022年甘肃省兰州市中考数学真题
一、选择题
1. 计算的结果是( )
A. ±2 B. 2 C. D.
【答案】B
【解析】
【分析】由于表示4的算术平方根,根据算术平方根的定义即可求出结果.
【详解】4的算术平方根是2,即=2,
故选B.
【点睛】本题考查算术平方根的定义,比较基础,正确把握算术平方根的定义是解题的关键.
2. 如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则( )
A. 52° B. 45° C. 38° D. 26°
【答案】C
【解析】
【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.
【详解】解:∵ab,
∴∠1=∠ABC=52°,
∵AC⊥b,
∴∠ACB=90°,
∴∠2=90°-∠ABC=38°,
故选:C.
【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.
3. 下列分别是2022年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.
详解】解:A.不能沿一条直线折叠完全重合;
B.不能沿一条直线折叠完全重合;
C.不能沿一条直线折叠完全重合;
D.能够沿一条直线折叠完全重合;
故选:D.
【点睛】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.
4. 计算:( )
A. B. C. D.
【答案】A
【解析】
【分析】根据完全平方公式展开即可.
【详解】解:原式=
故选:A.
【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.
5. 如图,内接于,CD是的直径,,则( )
A. 70° B. 60° C. 50° D. 40°
【答案】C
【解析】
【分析】由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.
【详解】解:∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠ACD+∠D=90°,
∵∠ACD=40°,
∴∠ADC=∠B=50°.
故选:C.
【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.
6. 若一次函数的图象经过点,,则与的大小关系是( )
A. B. C. D.
【答案】A
【解析】
【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论.
【详解】解:∵一次函数y=2x+1中,k=2>0,
∴y随着x的增大而增大.
∵点(-3,y1)和(4,y2)是一次函数y甘肃中考=2x+1图象上的两个点,-3<4,
∴y1<y2.
故选:A.
【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.
7. 关于x的一元二次方程有两个相等的实数根,则( )
A. -2 B. -1 C. 0 D. 1
【答案】B
【解析】
【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,据此可列出关于k的等量关系式,即可求得k的值.
【详解】∵原方程有两个相等的实数根,
∴△=b2−4ac=4−4×(−k)=0,且k≠0;
解得.
故选:B.
【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
8. 已知,,若,则( )
A. 4 B. 6 C. 8 D. 16
【答案】A
【解析】
【分析】根据相似三角形的性质得到,代入求解即可.
【详解】解:∵,
∴,即,
解得.
故选:A.
【点睛】此题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形性质.相似三角形性质:相似三角形对应边成比例,对应角相等.相似三角形的相似比等于周长比,相似三角形的相似比等于对应高,对应角平分线,对应中线的比,相似三角形的面积比等于相似比的平方.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论