专题3.1 数据分析初步章末重难点突破
【考点1 四种统计量的意义】
【例1】(2021•莲都区校级模拟)某校初中女子篮球队共有11名队员,她们的年龄情况如表:
年龄/岁 | 12 | 13 | 14 | 15 |
人数 | 1 | 3 | 3 | 4 |
则对该篮球队队员年龄描述正确的是( )
A.中位数是14 B.众数是13 C.平均数是14 D.方差是2
【变式1-1】(2021•兴庆区校级一模)某校“英语课本剧”表演比赛中,九年级的10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中正确的是( )
A.平均数是88 B.众数是85 C.中位数是90 D.方差是6
【变式1-2】(2021•诸城市一模)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论不正确的是( )
A.众数是10 B.中位数是9 C.平均数是9 D.方差是8
【变式1-3】(2021•鹿城区校级三模)小明参加射击比赛,成绩统计如表:
成绩(环) | 6 | 7 | 8 | 9 | 鞋店名10 |
次数 | 1 | 2 | 3 | 3 | 1 |
关于他的射击成绩,下列说法正确的是( )
A.平均数是8环 B.众数是8环
C.中位数是8环 D.方差是2环2
【考点2 方差的计算】
【例2】(2021•花溪区模拟)小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如图.
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是( )
A. B. C. D.1
【变式2-1】 (2021秋•泰兴市期中)已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是 .
【变式2-2】(2021•顺平县二模)如果一组数据a1,a2,…,an的方差是2,那么数据2a1﹣2,2a2﹣2,…,2an﹣2的方差是( )
A.2 B.4 C.8 D.16
【变式2-3】(2021秋•江宁区期中)甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):
甲:9,6,7,6,7,7.
乙:4,5,8,7,8,10.
(1)计算两人打靶成绩的方差;
(2)请推荐一人参加比赛,并说明理由.
【考点3 方差反映数据的稳定性】
【例3】(2021•盐城一模)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示.若选择A选手,则理由是 .
【变式3-1】(2021秋•云龙区校级月考)甲、乙、丙、丁都参加了5次数学模拟测试,每个人这5次测试的平均成绩都是125分,方差分别是,,,,最稳定的是( )
A.甲 B.乙 C.丙 D.丁
【变式3-2】(2021•九龙坡区校级模拟)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确的是( )
A.甲秧苗出苗更整齐
B.乙秧苗出苗更整齐
C.甲、乙出苗一样整齐
D.无法确定甲、乙出苗谁更整齐
【变式3-3】(2021秋•滨海县期中)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如表所示:
甲 | 乙 | 丙 | 丁 | |
9 | 8 | 9 | 9 | |
S2 | 1.8 | 0.6 | 5 | 0.6 |
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲 B.乙 C.丙 D.丁
【考点4 统计量的选择】
【例4】(2021秋•宝应县期中)在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数 B.方差 C.平均数 D.众数
【变式4-1】(2021•宁德模拟)初中三年学习生涯,让懵懂青涩的少年逐渐成长为奋发向上的青年.比较九(1)班50名同学三年前后的年龄数据,在平均数、众数、中位数和方差四个统计量中,大小没有发生变化的统计量是( )
A.平均数 B.众数 C.中位数 D.方差
【变式4-2】(2021秋•秦淮区期中)一鞋店试销一种新款式鞋,试销期间卖出情况如表:
型号 | 22 | 22.5 | 23 | 23.5 | 24 | 24.5 | 25 |
数量(双) | 3 | 5 | 10 | 15 | 8 | 3 | 2 |
鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是 .(填“平均数”、“众数”或“中位数”)
【变式4-3】(2021春•海拉尔区期末)八年级某班40位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖:
成绩/分 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
人数/人 | 3 | 4 | ◼ | ◼ | 7 | 8 | 10 |
下列关于成绩的统计量中,与被遮盖的数据无关的是( )
A.平均数,方差 B.平均数,众数
C.中位数,众数 D.中位数,方差
【考点5 由统计图分析数据的集中趋势】
【例5】(2021秋•沙坪坝区校级月考)为选拔同学参加全市组织的青少年科学知识竞赛,重庆一中在全校进行了“请党放心,强国有我”科学知识竞赛,并对八年级(3)班全体同学本次知识竞赛成绩进行了统计,我们将成绩分为A、B、C、D、E五类,制成了如下不完整的条形统计图和扇形统计图(如图所示).
请你根据统计图中的信息,解答下列问题:
(1)八年级(3)班学生总人数是 人;在扇形统计图中,a的值是 ;
(2)若八年级(3)班得C等级的同学人数是得E等级的同学人数的4倍,请将条形统计图补充完整;
(3)若等级为A表示优秀,等级为B表示良好,等级为C表示合格,等级为D表示不合格,等级为E表示差,根据本次统计结果,估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有多少人?
【变式5-1】(2021•嘉兴一模)某中学七年级甲、乙两个班进行了一次数学运算能力测试,测试人数每班都为40人,每个班的测试成绩分为A,B,C,D四个等级,绘制的统计图如图.
根据以上统计图提供的信息,下列说法错误的是( )
A.甲班D等的人数最多
B.乙班A等的人数最少
C.乙班B等与C等的人数相同
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论