数学模型分类(六大类)
优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型
数学建模常用方法
一、机理分析法––从基本物理定律以及系统的结构数据来推导出模型。
1.比例分析法--建立变量之间函数关系的最基本最常用的方法。
2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。
6.量纲分析法
二、数据分析法––从大量的观测数据利用统计方法建立数学模型。
1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i="1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3.人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
四、综合评价方法
1.层次分析法
2.模糊综合评判法
3.数据包络分析法
4.人工神经网络评价法
5.灰综合评价法
6.上述综合评价方法的两两集成
数学建模常用算法
1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)建模方法
3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算
法来描述,通常使用Lindo、Lingo软件实现)
4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关)
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论