数学发展史中伟人对数学发展史的贡献及影响
伊宁市第八中学
研究性学习课题研究结题报告
数学发展史中伟人对数学发展史的
贡献及影响
      高一(17)班
        耿智龙   
             
          涂诗涛   
          徐梦莺   
          李江玲   
          张月圆   
指导教师      秦九韶著作王奎亮   
报告日期 二〇一一年五月
数学发展史中伟人对数学发展史的
贡献及影响
【摘要】数学发展史就是数学这门学科的发展历程。数学发展的历史同样也是,人们的思想发生变化的历程,数学中的很多思想也是人类发展的思想。本文就围绕数学家们的思想进行了论述。介绍了从古至今数名数学家的生平事迹,讲述了其数学思想的特点及数学对世界的影响,总结了从数学发展史中得到的启示。
【关键词】数学家;数学发展史;数学思想
一、中国古代数学家
1.1  刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国一笔最宝贵的数学遗产.   
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果. 他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。
刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上.虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识实际上已经形成了一个独具特、包括概念和判断、并以数学证明为其联系纽带的理论体系。
1.2  祖冲之
祖冲之( 公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事
学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。
祖冲之是我国杰出的数学家、天文学家、文学家、地质学家、地理学家和科学家。南北朝时期人,汉族,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县),为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程,祖冲之的父亲也在朝中做官。
祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.14159263.1415927之间。他提出约率227和密率355113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”也就是圆周率的祖先。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闰月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,但早已失传。
他写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.14159263.1415927之间,相当于精确到小数第7位,简化成3.1415926,成为当时世界上最先进的成就。祖冲之入选中国世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家,创造了中国纪协世界之最。这一纪录直到15世纪才由阿拉伯数学家卡西打破。 祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。
1.3  秦九韶
秦九韶(1208年-1261年)南宋官员、数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。字道古,自称鲁郡(今山东曲阜)人,生于普州安岳(今属四川)。精研星象、音律、算术、诗词、弓剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,著作《数书九章》,其中的大衍求一术、三斜求积术和秦九韶算法是具有世界意义的重要贡献。
秦九韶(公元12021261),字道古,安岳人。秦九韶与李冶、杨辉、朱世杰并称宋元数
学四大家。其父秦季栖,进士出身,官至上部郎中、秘书少监。秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。
秦九韶的数学成就基本表现在他写的《数书九章》之中。然而,这本书在当时并没有引起大的影响,稍后的杨辉、朱世杰都没有引征过秦九韶的成果。《数书九章》的主要内容偏重于数学的应用方面,全书八十一道题目都是结合当时的实际需要提出的问题。
二、中国现代数学家
2.1  华罗庚
华罗庚(1910.11.12—1985.6.12.),世界著名数学家,中国解析数论、矩阵几何学、典型、自安函数论等多方面研究的创始人和开拓者。1910年11月12日出生于中国江苏金坛县,1985年6月12日病逝于日本东京。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
华罗庚,国际数学大师。他为中国数学的发展作出了无与伦比的贡献。华罗庚先生早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想作出了许多重大贡献。他在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展,也有国际上有名的“典型中国学派”,华罗庚先生在多复变函数论,典型方面的研究领先西方数学界10多年,这些研究成果被著名的华裔国际数学家丘成桐高度称赞,是难以比拟的天才。
华罗庚是中国解析数论、矩阵几何学、典型、自守函数论等多方面研究的创始人和开拓者。他一生为我们留下了十部巨著:《堆垒素数论》、《指数和的估价及其在数论中的应用》、《多复变函数论中的典型域的调和分析》、《数论导引》、《典型》(与万哲先合著)、《从单位圆谈起》、《数论在近似分析中的应用》(与王元合著)、《二阶两个自变数两个未知函数的常系数线性偏微分方程组》(与他人合著)、《优选学》及《计划经济范围最优化的数学理论》,其中八部为国外翻译出版,已列入20世纪数学的经典著作之列。 此外,还有学术论文150余篇,科普作品《优选法评 话及其补充》、《统筹法评话及补充》等,辑为《华罗庚科普著作选集》。
40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计;对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,三角和研究成果被国际数学界称为“华氏定理”。
倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并亲自在中国推广应用。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文150多篇,并有多部专著和科普性著作。在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。
其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多复变典型域上的调和分析》以精密的分析和矩阵技巧,结合表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式,获中国自然科学奖一等奖。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。
他是当代自学成才的科学巨匠、蜚声中外的数学家;他写的课外读物曾是中学生们打开数学殿堂的神奇钥匙;在中国的广袤大地上,到处都留有他推广优选法与统筹法的艰辛足迹……
2.2  陈省身
陈省身,汉族,美籍华人,国际数学大师、著名教育家、中国科学院外籍院士,“走进美妙的数学花园”创始人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。
陈省身先后担任我国西南联大教授,美国普林斯顿高等研究所研究员,芝加哥大学、伯克利加州大学终身教授等,是美国国家数学研究所(虽然影响均较小)、南开大学数学研究所的创始所长.陈省身的数学工作范围算广,包括微分几何、拓扑学、微分方程、几何、李方面.他是发展现代微分几何学的大师.早在40年代,他结合微分几何与拓扑学的方法,完成了黎曼流形的高斯—博内一般形式和埃尔米特流形的示性类论.他首次应用纤维丛概念于微分几何的研究,引进了后来通称的陈氏示性类(简称陈类).为大范围微分几何提供了不可
缺少的工具.他引近的一些概念、方法和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分.陈省身还是一位杰出的教育家,他培养了大批优秀的博士生.他本人也获得了许多荣誉和奖励,例如1975年获美国总统颁发的美国国家科学奖,1983年获美国数学会“全体成就”靳蒂尔奖,1984年获沃尔夫奖。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。