一文搞懂代数、几何、分析三者到底有什么不同
一文搞懂代数、几何、分析三者到底有什么不同
数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
代数学范畴
1.算数
算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。它后来被阿拉伯人采用,之后传到西欧。15世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺进一步完善了格拉斯曼的体系。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其它分支的最坚实的基础。
2.初等代数
自然数是什么作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。初等代数的主要内容在16世纪便已基本上发展完备了。
古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。3世纪的丢番图用有理数求一次、二次不定方程的解。13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。16世纪意大利数学家发现了三次和四次方程的解法。
代数学符号发展的历史,可分为三个阶段。第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。三世纪的丢番图的杰出贡献之一,就
是把希腊代数学简化,开创了简化代数。然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。16世纪韦达的名著《分析方法入门》,对符号代数的发展有不少贡献。16世纪末,维叶特开创符号代数,经笛卡尔改进后成为现代的形式。
“+”、“-”号第一次在数学书中出现,是1489年魏德曼的著作。不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。1540年,雷科德开始使用现在使用“=”。到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。1600年哈里奥特创用大于号“>”和小于号“<”。1631年,奥屈特给出“×”、“÷”作为乘除运算符。1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。
数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。公元前4世纪,古希腊人发现无理数。公元前2世纪(西汉时期),我国开始应用负数。1545年,意大利的卡尔达诺开始使用虚数。1614年,英国的耐普尔发明对数。17世纪末,一般的实数指数概念才逐步形成。
3.高等代数
在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而—、二次方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。
1683年关孝和(日本人)最早引入行列式概念。关于行列式理论最系统的论述,则是雅可比1841年的《论行列式的形成与性质》一书。在逻辑上,矩阵的概念先于行列式的概念;而在历史上,次序正相反。凯雷在1855年引入了矩阵的概念,在1858年发表了关于这个课题的第一篇重要文章《矩阵论的研究报告》。
19世纪,行列式和矩阵受到人们极大的关注,出现了千余篇关于这两个课题的文章。但是,它们在数学上并不是大的改革,而是速记的一种表达式。不过已经证明它们是高度有用的工具。
多项式代数的研究始于对3、4次方程求根公式的探索。1515年,菲洛解决了被简化为缺2次
项的3次方程的求解问题。1540年,费尔拉里成功地发现了一般4次方程的代数解法。人们继续寻求5次、6次或更高次方程的求根公式,但这些努力在200多年中付诸东流。
1746年,达朗贝尔首先给出了“代数学基本定理”的证明(有不完善之处)。这个定理断言:每一个实系数或复系数的n次代数方程,至少有一个实根或复根。因此,一般地说,n次代数方程应当有n个根。1799年,22岁的高斯在写博士论文中,给出了这个定理的第一个严格的证明。1824年,22岁的阿贝尔证明了:高于4次的一般方程的全部系数组成的根式,不可能是它的根。1828年,年仅17岁的伽罗华创立了“伽罗华理论”,包含了方程能用根号解出的充分必要条件。
4.数论
以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。
早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷
的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》中的“更相减损法”是相同的。埃拉托尼则给出了寻不大于给定的自然数N的全部素数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1,在这筛子般的纸草上留下的便全是素数了。
当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。
丢番图的《算术》中给出了求x?+y?=z?所有整数解的方法。费尔马指出x^n+y^n=z^n在n>3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形成了系统的数论。
数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。19世纪后半期出现了解析数论,用分析方法研究素数
的分布。二十世纪出现了完备的数论理论。
5.抽象代数
1843年,哈密顿发明了一种乘法交换律不成立的代数——四元数代数。第二年,格拉斯曼推演出更有一般性的几类代数。1857年,凯雷设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是相容的),就能研究出许多种代数体系。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。