【压轴题】七年级数学下期中试卷(带答案)
一、选择题
1.不等式x+1≥2的解集在数轴上表示正确的是( )
A. B. C. D.
2.已知实数a,b,若a>b,则下列结论错误的是
A.a-7>b-7 B.6+a>b+6 C. D.-3a>-3b
3.下列语句中,假命题的是( )
A.对顶角相等
B.若直线a、b、c满足b∥a,c∥a,那么b∥c
七年级下册数学试卷C.两直线平行,同旁内角互补
D.互补的角是邻补角
4.如图所示,点P到直线l的距离是( )
A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度
5.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
6.不等式组的解集,在数轴上表示正确的是( )
A. B. C. D.
7.如图,点在的延长线上,则下列条件中,不能判定的是( )
A. B.
C. D.
8.在平面直角坐标系中,点的坐标,点的坐标,将线段平移,使得到达点,点到达点,则点的坐标是( )
A. B. C. D.
9.请你观察、思考下列计算过程:因为112=121,所以=11:,因为1112=12321所以=111…,由此猜想=( )
A.111111 B.1111111 C.11111111 D.111111111
10.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )
A.第一次右拐50°,第二次左拐130° B.第一次左拐50°,第二次右拐50°
C.第一次左拐50°,第二次左拐130° D.第一次右拐50°,第二次右拐50°
11.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()
A. B. C. D.
12.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
二、填空题
13.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.
14.如图,把一长方形纸片ABCD沿EF折叠后ED与BC交于点G,D、C分别在M,N的位置,若∠EFG=56°,则∠EGB =___________.
15.若不等式组恰有四个整数解,则的取值范围是_________.
16.如图4,将ABC 沿直线AB向右平移后到达BDE的位置,若CAB=50°,ABC=100°,则CBE的度数为 .
17.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.
18.不等式的最大整数解是__________.
19.若关于x、y的二元一次方程组的解互为相反数,则a的值是_______________.
20.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________。
三、解答题
21.如图,在中,于点是上任意一点,于点且.
证明:.
证明:(已知)
( )
( )
(已知)
( )
( )( )
( )
22.A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.
(1)求A,B两种型号空调的进价;
(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A
种型号的空调多少台?
23.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)
请你根据图中提供的信息,回答下列问题:
(1)扇形统计图中a的值为 ,“活动时间为4天”的扇形所对圆心角的度数为 °,该校初一学生的总人数为 ;
(2)补全频数分布直方图;
(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
24.某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
进价元千克 | 售价元千克 | |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?
25.课题学习:平行线的“等角转化功能.
(1)问题情景:如图1,已知点是外一点,连接、,求的度数.
天天同学看过图形后立即想出:,请你补全他的推理过程.
解:(1)如图1,过点作,∴ , .
又∵,∴.
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.
(2)问题迁移:如图2,,求的度数.
(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
试题解析:∵x+1≥2,
∴x≥1.
故选A.
考点:解一元一次不等式;在数轴上表示不等式的解集.
2.D
解析:D
【解析】
A.∵a>b,∴a-7>b-7,∴选项A正确;
B.∵a>b,∴6+a>b+6,∴选项B正确;
C.∵a>b,∴,∴选项C正确;
D.∵a>b,∴-3a<-3b,∴选项D错误.
故选D.
3.D
解析:D
【解析】
分析:分别判断是否是假命题.
详解:选项A. 对顶角相等 ,正确.
选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论