1.2房地产的概念
•建筑密度%= 建筑基底总面积 ×100%
建筑用地面积
•容积率=总建筑面积
建筑用地面积
•总建筑面积=土地总面积×建筑密度×建筑层数
•容积率=建筑密度×建筑层数
•套内建筑面积=套内房屋使用面积+套内墙体面积+套内阳台面积
•建筑面积=套内建筑面积+分摊的共有建筑面积
2.3房地产的供求与价格
•供给量=存量—拆毁量—转换为其它种类的房地产量+其它种类房地产转换为该种房地产量+新开发量
•弹性= 作为因变量的经济变量的相对变化
作为自变量的经济变量的相对变化
•房地产需求的价格弹性= 房地产需求量变化的百分比
•建筑密度%= 建筑基底总面积 ×100%
建筑用地面积
•容积率=总建筑面积
建筑用地面积
•总建筑面积=土地总面积×建筑密度×建筑层数
•容积率=建筑密度×建筑层数
•套内建筑面积=套内房屋使用面积+套内墙体面积+套内阳台面积
•建筑面积=套内建筑面积+分摊的共有建筑面积
2.3房地产的供求与价格
•供给量=存量—拆毁量—转换为其它种类的房地产量+其它种类房地产转换为该种房地产量+新开发量
•弹性= 作为因变量的经济变量的相对变化
作为自变量的经济变量的相对变化
•房地产需求的价格弹性= 房地产需求量变化的百分比
房地产价格变化的百分比
•房地产需求的收入弹性= 房地产需求量变化的百分比
消费者收入量变化的百分比
•房地产需求的人口弹性= 房地产需求量变化的百分比
人口数量变化的百分比
•房地产需求的交叉价格弹性= 一种房地产需求量变化的百分比
另一种房地产或商品价格变化的百分比
•房地产需求的价格预期弹性= 房地产需求量变化的百分比
预期的房地产价格变化的百分比
•房地产供给的价格弹性= 房地产供给量变化的百分比
房地产价格变化的百分比
•房地产供给的要素成本弹性= 房地产供给量变化的百分比
要素价格变化的百分比
2.4房地产价值和价格的种类
•一个良好的评估价值=正常成交价格=市场价格
•房地产需求的收入弹性= 房地产需求量变化的百分比
消费者收入量变化的百分比
•房地产需求的人口弹性= 房地产需求量变化的百分比
人口数量变化的百分比
•房地产需求的交叉价格弹性= 一种房地产需求量变化的百分比
另一种房地产或商品价格变化的百分比
•房地产需求的价格预期弹性= 房地产需求量变化的百分比
预期的房地产价格变化的百分比
•房地产供给的价格弹性= 房地产供给量变化的百分比
房地产价格变化的百分比
•房地产供给的要素成本弹性= 房地产供给量变化的百分比
要素价格变化的百分比
2.4房地产价值和价格的种类
•一个良好的评估价值=正常成交价格=市场价格
•基准地价:在城镇规划区范围内,对现状利用条件下不同级别或不同均质地域的土地,按照商业、居住、工业等用途,分别评估确定的某一估价期日上法定最高年期土地使用权区域平均价格。
•标定价格:政府根据管理需要,评估的某一宗地在正常土地市场条件下,于某一估价期日的土地使用权价格,它是该类土地在该区域的标准指导价格。
•房屋重置价格:某一基准日期,不同区域、不同用途、不同建筑结构、不同档次或等级的房屋,建造它所需要的一切合理必要的费用、税金及应获得的利润。
•房地价格=土地价格+建筑物价格
•土地价格=房地价格—建筑物价格
•建筑物价格=房地价格—土地价格
•楼面地价= 土地总价
总建筑面积
•楼面地价= 土地总价 × 土地总面积 = 土地单价
总建筑面积 土地总面积 容积率
•期房目前的价格=现房价格—(预计从期房达到现房期间)现房出租的净收益的折现值—风
•标定价格:政府根据管理需要,评估的某一宗地在正常土地市场条件下,于某一估价期日的土地使用权价格,它是该类土地在该区域的标准指导价格。
•房屋重置价格:某一基准日期,不同区域、不同用途、不同建筑结构、不同档次或等级的房屋,建造它所需要的一切合理必要的费用、税金及应获得的利润。
•房地价格=土地价格+建筑物价格
•土地价格=房地价格—建筑物价格
•建筑物价格=房地价格—土地价格
•楼面地价= 土地总价
总建筑面积
•楼面地价= 土地总价 × 土地总面积 = 土地单价
总建筑面积 土地总面积 容积率
•期房目前的价格=现房价格—(预计从期房达到现房期间)现房出租的净收益的折现值—风
险补偿
•补地价=改变后的地价—改变前的地价
•补地价(单价)= 现楼面地价×现容积率—原楼面地价×原容积率
•补地价(总价)=补地价(单价)×土地总面积
•补地价(单价)=原楼面地价×(现容积率—原容积率)
•补地价(单价)= 原容积率下的土地单价 ×(现容积率—原容积率)
原容积率
4.4建立价格可比基础
•建筑面积下的价格=套内建筑面积下的价格× 套内建筑面积
建筑面积
•建筑面积下的价格=使用面积下的价格× 使用面积
建筑面积
•套内建筑面积下的价格=使用面积下的价格× 使用面积
套内使用面积
•1公顷=10 000平方米
•补地价=改变后的地价—改变前的地价
•补地价(单价)= 现楼面地价×现容积率—原楼面地价×原容积率
•补地价(总价)=补地价(单价)×土地总面积
•补地价(单价)=原楼面地价×(现容积率—原容积率)
•补地价(单价)= 原容积率下的土地单价 ×(现容积率—原容积率)
原容积率
4.4建立价格可比基础
•建筑面积下的价格=套内建筑面积下的价格× 套内建筑面积
建筑面积
•建筑面积下的价格=使用面积下的价格× 使用面积
建筑面积
•套内建筑面积下的价格=使用面积下的价格× 使用面积
套内使用面积
•1公顷=10 000平方米
•1亩=666.67平方米
•1平方英尺=0.09290304平方米
•1坪=3.30579平方米
•平方米下的价格=公顷下的价格÷10 000
•平方米下的价格=亩下的价格÷666.67
•平方米下的价格=平方英尺下的价格÷0.09290304
•平方米下的价格=坪下的价格÷3.30579
4.5交易情况修正
•采用百分率法进行交易情况修正的一般公式为:
可比实例成交价格×交易情况修正系数=可比实例正常市场价格
可比实例成交价格× 1 =可比实例正常市场价格
1±S % 或者:
可比实例成交价格× 100 =可比实例正常市场价格
100±S %
上式中, 1 或 100 是交易情况修正系数
•1平方英尺=0.09290304平方米
•1坪=3.30579平方米
•平方米下的价格=公顷下的价格÷10 000
•平方米下的价格=亩下的价格÷666.67
•平方米下的价格=平方英尺下的价格÷0.09290304
•平方米下的价格=坪下的价格÷3.30579
4.5交易情况修正
•采用百分率法进行交易情况修正的一般公式为:
可比实例成交价格×交易情况修正系数=可比实例正常市场价格
可比实例成交价格× 1 =可比实例正常市场价格
1±S % 或者:
可比实例成交价格× 100 =可比实例正常市场价格
100±S %
上式中, 1 或 100 是交易情况修正系数
1±S % 100±S %
•采用差额法进行交易情况修正的一般公式为:可比实例成交价格±交易情况修正数额=可比实例正常市场价格
•正常成交价格—应有卖方缴纳的税费=卖方实际得到的价格
•正常成交价格+应有买方缴纳的税费=买方实际付出的价格
•应有卖方缴纳的税费=正常成交价格×卖方缴纳税率
•应有买方缴纳的税费=正常成交价格×买方缴纳税率
•正常成交价格= 卖方实际得到的价格
1—卖方缴纳税率
•正常成交价格= 买方实际付出的价格
1+买方缴纳税率
4.6交易日期调整
•可比实例在成交日期时的价格×(1±T%)=可比实例在估价时点时的价格
•可比实例在成交日期时的价格× (100±T)/100=可比实例在估价时点时的价格
•采用定基价格指数进行交易日期调整的公式为:
•采用差额法进行交易情况修正的一般公式为:可比实例成交价格±交易情况修正数额=可比实例正常市场价格
•正常成交价格—应有卖方缴纳的税费=卖方实际得到的价格
•正常成交价格+应有买方缴纳的税费=买方实际付出的价格
•应有卖方缴纳的税费=正常成交价格×卖方缴纳税率
•应有买方缴纳的税费=正常成交价格×买方缴纳税率
•正常成交价格= 卖方实际得到的价格
1—卖方缴纳税率
•正常成交价格= 买方实际付出的价格
1+买方缴纳税率
4.6交易日期调整
•可比实例在成交日期时的价格×(1±T%)=可比实例在估价时点时的价格
•可比实例在成交日期时的价格× (100±T)/100=可比实例在估价时点时的价格
•采用定基价格指数进行交易日期调整的公式为:
可比实例在成交日期时的价格×估价时点时的价格指数 =可比实例在估价时点时的价格
成交日期时的价格指数
•采用环比价格指数进行交易日期调整的公式为:
可比实例在成交日期时的价格×成交日期的下一时期的价格指数×再下一时期的价格指数×…×估价时点时的价格指数=可比实例在估价时点时的价格
•采用逐期递增或递减的价格变动率进行交易日期调整的公式为:
可比实例在成交日期时的价格×(1±价格变动率)期数=可比实例在估价时点时的价格
•采用期内平均上升或下降的价格变动率进行交易日期调整的公式为:
可比实例在成交日期时的价格×(1±价格变动率×期数)=可比实例在估价时点时的价格
4.7房地产状况调整
•房地产状况调整的方法主要有百分率法和差额法、回归分析法
•可比实例在其房地产状况下的价格×房地产状况调整系数=可比实例在估价对象房地产状况下的价格
或者∶
可比实例在其房地产状况下的价格× 1 =可比实例在估价对象房地产状况下的价格
成交日期时的价格指数
•采用环比价格指数进行交易日期调整的公式为:
可比实例在成交日期时的价格×成交日期的下一时期的价格指数×再下一时期的价格指数×…×估价时点时的价格指数=可比实例在估价时点时的价格
•采用逐期递增或递减的价格变动率进行交易日期调整的公式为:
可比实例在成交日期时的价格×(1±价格变动率)期数=可比实例在估价时点时的价格
•采用期内平均上升或下降的价格变动率进行交易日期调整的公式为:
可比实例在成交日期时的价格×(1±价格变动率×期数)=可比实例在估价时点时的价格
4.7房地产状况调整
•房地产状况调整的方法主要有百分率法和差额法、回归分析法
•可比实例在其房地产状况下的价格×房地产状况调整系数=可比实例在估价对象房地产状况下的价格
或者∶
可比实例在其房地产状况下的价格× 1 =可比实例在估价对象房地产状况下的价格
1±R %
可比实例在其房地产状况下的价格× 100 =可比实例在估价对象房地产状况下的价格
100±R
•可比实例在其房地产状况下的价格×100/()=可比实例在估价对象房地产状况下的价格
•可比实例在其房地产状况下的价格×100/()×()/100=可比实例在估价对象房地产状况下的价格
注∶上式()为估价对象房地产状况相对于标准房地产状况的得分
4.8求取比准价格
•百分率法下的修正、调整系数连乘公式∶
估价对象价格=可比实例成交价格×交易情况修正系数×交易日期调整系数×房地产状况调整系数
估价对象价格×(1±S %)×(1±R %)=可比实例成交价格×(1±T %)或者∶
估价对象价格=可比实例成交价格× 1 ×(1±T %)× 1 或者∶
1±S % 1±R %
估价对象价格=可比实例成交价格× 100 × 100±T × 100
可比实例在其房地产状况下的价格× 100 =可比实例在估价对象房地产状况下的价格
100±R
•可比实例在其房地产状况下的价格×100/()=可比实例在估价对象房地产状况下的价格
•可比实例在其房地产状况下的价格×100/()×()/100=可比实例在估价对象房地产状况下的价格
注∶上式()为估价对象房地产状况相对于标准房地产状况的得分
4.8求取比准价格
•百分率法下的修正、调整系数连乘公式∶
估价对象价格=可比实例成交价格×交易情况修正系数×交易日期调整系数×房地产状况调整系数
估价对象价格×(1±S %)×(1±R %)=可比实例成交价格×(1±T %)或者∶
估价对象价格=可比实例成交价格× 1 ×(1±T %)× 1 或者∶
1±S % 1±R %
估价对象价格=可比实例成交价格× 100 × 100±T × 100
100±S 100 100±R
•百分率法下的修正、调整系数累加公式∶
估价对象价格=可比实例成交价格×(1+交易情况修正系数+交易日期调整系数+房地产状况调整系数)
估价对象价格×(1±S %±R %)=可比实例成交价格×(1±T %)或者∶
估价对象价格=可比实例成交价格× 1±T % 或者∶
1±S %±R %
估价对象价格=可比实例成交价格× 100±T
100±S±R
•差额法下的公式∶
估价对象价格=可比实例成交价格±交易情况修正系数±交易日期调整系数±房地产状况调整数额
5.2房地产价格的构成
•开发利润=开发完成后的房地产价值—土地取得成本—开发成本—管理费用—投资利息—销售费用—销售税费
•百分率法下的修正、调整系数累加公式∶
估价对象价格=可比实例成交价格×(1+交易情况修正系数+交易日期调整系数+房地产状况调整系数)
估价对象价格×(1±S %±R %)=可比实例成交价格×(1±T %)或者∶
估价对象价格=可比实例成交价格× 1±T % 或者∶
1±S %±R %
估价对象价格=可比实例成交价格× 100±T
100±S±R
•差额法下的公式∶
估价对象价格=可比实例成交价格±交易情况修正系数±交易日期调整系数±房地产状况调整数额
5.2房地产价格的构成
•开发利润=开发完成后的房地产价值—土地取得成本—开发成本—管理费用—投资利息—销售费用—销售税费
•计算基数=土地取得成本+开发成本,即:直接成本利润率=开发利润/(土地取得成本+开发成本)
•计算基数=土地取得成本+开发成本+管理费用:投资利润率=开发利润/(土地取得成本+开发成本+管理费用)
•计算基数=土地取得成本+开发成本+管理费用+投资利息+销售费用,相应的利润率可称为成本利润率,即:
成本利润率=开发利润/(土地取得成本+开发成本+管理费用+投资利息+销售费用)
•计算基数=开发完成后的房地产价值(售价),相应的利润率可称为销售利润率,即: 销售利润率=开发利润/开发完成后的房地产价值
5.3成本法的基本公式
•成本法最基本的公式为:房地产价格=重新购建价格一折旧
•新开发土地价格=取得待开发土地的成本+土地开发成本+管理费用+投资利息+销售费用十销售税费+开发利润
上式中:
•开发完成后可转让土地面积的比率=开发完成后可转让土地面积的总面积/开发区用地总面
•计算基数=土地取得成本+开发成本+管理费用:投资利润率=开发利润/(土地取得成本+开发成本+管理费用)
•计算基数=土地取得成本+开发成本+管理费用+投资利息+销售费用,相应的利润率可称为成本利润率,即:
成本利润率=开发利润/(土地取得成本+开发成本+管理费用+投资利息+销售费用)
•计算基数=开发完成后的房地产价值(售价),相应的利润率可称为销售利润率,即: 销售利润率=开发利润/开发完成后的房地产价值
5.3成本法的基本公式
•成本法最基本的公式为:房地产价格=重新购建价格一折旧
•新开发土地价格=取得待开发土地的成本+土地开发成本+管理费用+投资利息+销售费用十销售税费+开发利润
上式中:
•开发完成后可转让土地面积的比率=开发完成后可转让土地面积的总面积/开发区用地总面
积×100%
•新开发区某宗土地的单价=(取得该用地的总代价+土地开发总成本+总管理费用+总投资利息+总销售费用+总销售税费+ 总开发利润)/(用地总面积×开发完成后可转让面积的比率)×用途、区位等因素调整系数
•求取该荒地开发完成后可转让熟地平均单价的过程如下:
该荒地开发完成后可转让熟地的总价=取得该荒地的总代价十土地开发总成本 十总管理费用十总投资利息+
总销售费用+总销售税费+ 总开发利润
=取得该荒地的总代价十土地开发总成本 十总管理费用十总投资利息+可转让熟地的总价×销售费用、销售税费和开发利润的比率
得出:
•该荒地开发完成后可转让熟地的总价= (取得该荒地的总代价 十土地开发总成本十总管理费用十总投资利息)
1—销售费用、销售税费和开发利润的比率
•该荒地开发完成后可转让熟地的平均单价=取得该荒地的总代价+土地开发总成本+总管理
•新开发区某宗土地的单价=(取得该用地的总代价+土地开发总成本+总管理费用+总投资利息+总销售费用+总销售税费+ 总开发利润)/(用地总面积×开发完成后可转让面积的比率)×用途、区位等因素调整系数
•求取该荒地开发完成后可转让熟地平均单价的过程如下:
该荒地开发完成后可转让熟地的总价=取得该荒地的总代价十土地开发总成本 十总管理费用十总投资利息+
总销售费用+总销售税费+ 总开发利润
=取得该荒地的总代价十土地开发总成本 十总管理费用十总投资利息+可转让熟地的总价×销售费用、销售税费和开发利润的比率
得出:
•该荒地开发完成后可转让熟地的总价= (取得该荒地的总代价 十土地开发总成本十总管理费用十总投资利息)
1—销售费用、销售税费和开发利润的比率
•该荒地开发完成后可转让熟地的平均单价=取得该荒地的总代价+土地开发总成本+总管理
费用+总投资利息
(1—销售费用、销售税费和开发利润的比率)×可转让熟地面积
= (取得该荒地的总代价+土地开发总成本+总管理费用十总投资利息)
(1—销售费用、销售税费和开发利润的比率)×可转让熟地面积比率×该荒地总面积
•新建房地价格=土地得成本+土地开发成本+建筑物建造成本+管理费用+投资利息+销售费用+销售税费+开发利润
•新建建筑物价格=建筑物建造成本+管理费用+投资利息销售费用+销售税费+开发利润
•旧房地价格=土地的重新取得价格+建筑物的重新购建价格—建筑物重新购建价格
•旧建筑物价格=建筑物的重新购建价格—建筑物的折旧
5.5建筑物的折旧
•建筑物的折旧=建筑物重新购建价格一建筑物市场价值
•剩余经济寿命=经济寿命一有效经过年数
•直线法的年折旧计算公式:
Di=D=C—S/N
=C (1—R) /N
(1—销售费用、销售税费和开发利润的比率)×可转让熟地面积
= (取得该荒地的总代价+土地开发总成本+总管理费用十总投资利息)
(1—销售费用、销售税费和开发利润的比率)×可转让熟地面积比率×该荒地总面积
•新建房地价格=土地得成本+土地开发成本+建筑物建造成本+管理费用+投资利息+销售费用+销售税费+开发利润
•新建建筑物价格=建筑物建造成本+管理费用+投资利息销售费用+销售税费+开发利润
•旧房地价格=土地的重新取得价格+建筑物的重新购建价格—建筑物重新购建价格
•旧建筑物价格=建筑物的重新购建价格—建筑物的折旧
5.5建筑物的折旧
•建筑物的折旧=建筑物重新购建价格一建筑物市场价值
•剩余经济寿命=经济寿命一有效经过年数
•直线法的年折旧计算公式:
Di=D=C—S/N
=C (1—R) /N
上式中:Di——第i年的折旧额。D是一个常数;C——建筑物的重新购建价格;S——建筑物的净残值
N——建筑物的经济寿命;R——建筑物的净残值率;(C—S) ——称为折旧基数;
•年折旧率d=D/C×100% =(C—S)/(C×N) ×100%=(1—R)/N×100%
•有效经过年数为t年的建筑物折旧总额Et=D×t=(C—S)t/N=C(1—R) t/N
•直线法折旧下的建筑物现值的计算公式为:V=C—Et=C—(C—S)t/N=c[1—(1—R)t/N]
上式中:Et——建筑物的折旧总额;V——建筑物的现值;(C—S) ——称为折旧基数;
•成新折扣法
V=C+q 式中:V——建筑物的现值;C——建筑物的重新购建价格;q——建筑物的成新率(%);
•用直线法计算成新率的公式为:
q=[1—(1—R)t/N] ×100% 当R=0时,q=(1—t/N)×100%
=[1—(1—R) N—n/N]×100% =t/N×100%
=[1—(1—R) t/ t+n]×100% =n/ t+n×100%
•建筑物经济寿命=1/年折旧率
N——建筑物的经济寿命;R——建筑物的净残值率;(C—S) ——称为折旧基数;
•年折旧率d=D/C×100% =(C—S)/(C×N) ×100%=(1—R)/N×100%
•有效经过年数为t年的建筑物折旧总额Et=D×t=(C—S)t/N=C(1—R) t/N
•直线法折旧下的建筑物现值的计算公式为:V=C—Et=C—(C—S)t/N=c[1—(1—R)t/N]
上式中:Et——建筑物的折旧总额;V——建筑物的现值;(C—S) ——称为折旧基数;
•成新折扣法
V=C+q 式中:V——建筑物的现值;C——建筑物的重新购建价格;q——建筑物的成新率(%);
•用直线法计算成新率的公式为:
q=[1—(1—R)t/N] ×100% 当R=0时,q=(1—t/N)×100%
=[1—(1—R) N—n/N]×100% =t/N×100%
=[1—(1—R) t/ t+n]×100% =n/ t+n×100%
•建筑物经济寿命=1/年折旧率
•修复所必需的费用≤修复后的房地产价值—修复前的房地产价值
•扣除功能过剩引起的折旧后的成本=重置成本—超额持有成本
•扣除功能过剩引起的折旧后的成本=重置成本—(无效成本+超额持有成本)
5.6成本应用中涉及的有关规定
•年折旧额=原价×(1—残值率)/耐用年限
6.1收益法的基本原理
•地价=年地租×购买年 •地价=地租/利息率
•某笔资金×利率=房地产的净收益
•房地产价格=房地产的净收益/利率
6.2报酬资本化法的公式
•V=A1/1+Y1+ A2/(1+Y1)×(1+Y2)+…+An/(1+Y1)×(1+Y2)…×(1+Yn)]
•V=A1/1+Y+A2/(1+Y)2+A3/(1+Y)3+…+An/(1+Y)n
•A末=A初(1+Y)
•V=A/Y[1—1/(1+Y)n]
•V=A/Y
•扣除功能过剩引起的折旧后的成本=重置成本—超额持有成本
•扣除功能过剩引起的折旧后的成本=重置成本—(无效成本+超额持有成本)
5.6成本应用中涉及的有关规定
•年折旧额=原价×(1—残值率)/耐用年限
6.1收益法的基本原理
•地价=年地租×购买年 •地价=地租/利息率
•某笔资金×利率=房地产的净收益
•房地产价格=房地产的净收益/利率
6.2报酬资本化法的公式
•V=A1/1+Y1+ A2/(1+Y1)×(1+Y2)+…+An/(1+Y1)×(1+Y2)…×(1+Yn)]
•V=A1/1+Y+A2/(1+Y)2+A3/(1+Y)3+…+An/(1+Y)n
•A末=A初(1+Y)
•V=A/Y[1—1/(1+Y)n]
•V=A/Y
•Kn=1—1/(1+Y)n =(1+Y)n—1/(1+Y)n
•V70=V∞×K70
•V50=V∞×K50
•V∞=V50/K50
•V40=V40×K40/K50
•Vn= VN×Kn/ KN
=VN×(1+Y ×[(1+Y)n—1] / (1+Y —1
•Vn= A/Yn〔1—1/(1+Yn)n〕或VN= A/YN〔1—1/(1+YN)N〕
以上几个公式中:V—房地产收益价格又称现值;n—收益年限;A1,A2…An—第n期净收益;Y1,Y2…Yn—第Y期报酬率(折现率)
•收益期限为有限年的公式: 式中t为净收益有变化的期限
•收益期限为无限年的公式:
•净收益按一定数额递增 有限年V=(A/Y+b/Y2)×[1—1/(1+ Y)n]—b/Y×n/(1+Y)n 未来第n年为 [A十(n—1)b]收益年限为无限年V=A/Y+b/ Y2
•净收益按一定数额递减 有限年V=(A/Y—b/Y2)×[1—1/(1+Y)n]+b/Y×n/(1+Y)n 未来第n年为 [A—
•V70=V∞×K70
•V50=V∞×K50
•V∞=V50/K50
•V40=V40×K40/K50
•Vn= VN×Kn/ KN
=VN×(1+Y ×[(1+Y)n—1] / (1+Y —1
•Vn= A/Yn〔1—1/(1+Yn)n〕或VN= A/YN〔1—1/(1+YN)N〕
以上几个公式中:V—房地产收益价格又称现值;n—收益年限;A1,A2…An—第n期净收益;Y1,Y2…Yn—第Y期报酬率(折现率)
•收益期限为有限年的公式: 式中t为净收益有变化的期限
•收益期限为无限年的公式:
•净收益按一定数额递增 有限年V=(A/Y+b/Y2)×[1—1/(1+ Y)n]—b/Y×n/(1+Y)n 未来第n年为 [A十(n—1)b]收益年限为无限年V=A/Y+b/ Y2
•净收益按一定数额递减 有限年V=(A/Y—b/Y2)×[1—1/(1+Y)n]+b/Y×n/(1+Y)n 未来第n年为 [A—
(n—1)b]
n≤A/b+1
•净收益按一定比率递增 有限年 V=A/(Y—g)×[1— (1+g)/(1+Y) n ] 未来第n年为 A(1+g)n—1
无限年 V=A/(Y—g)
•净收益按一定比率递减 有限年 V=A/(Y+g)×[1— (1—g)/(1+Y) n] 未来第n年为A(1—g)n—1
无限年 V=A/Y+g
以上几个公式中:V—房地产收益价格又称现值;b—净收益逐年递增(减)的数额;g—净收益逐年递减的比率;
•净收益为有效毛收入减运营费用公式:有效毛收入逐年递增的比率为gI,运营费用逐年递增的比率为gE,收益年限为有限年公式为:V=I/(Y—gI)×[1— (1+gI)/(1+Y) n]—E/Y—gE×[1— (1+gE)/(1+Y) n ]
上式中:I—有效毛收入;E—运营费用;gI—逐年递增的比率;gE—逐年递增的比率;
•预知未来若干年后的价格的公式:
n≤A/b+1
•净收益按一定比率递增 有限年 V=A/(Y—g)×[1— (1+g)/(1+Y) n ] 未来第n年为 A(1+g)n—1
无限年 V=A/(Y—g)
•净收益按一定比率递减 有限年 V=A/(Y+g)×[1— (1—g)/(1+Y) n] 未来第n年为A(1—g)n—1
无限年 V=A/Y+g
以上几个公式中:V—房地产收益价格又称现值;b—净收益逐年递增(减)的数额;g—净收益逐年递减的比率;
•净收益为有效毛收入减运营费用公式:有效毛收入逐年递增的比率为gI,运营费用逐年递增的比率为gE,收益年限为有限年公式为:V=I/(Y—gI)×[1— (1+gI)/(1+Y) n]—E/Y—gE×[1— (1+gE)/(1+Y) n ]
上式中:I—有效毛收入;E—运营费用;gI—逐年递增的比率;gE—逐年递增的比率;
•预知未来若干年后的价格的公式:
•如果净收益每年不变为A,则公式为: V=A/Y[1— (1+Y) t]+Vt/(1+Y) t
•如果净收益按一定数额递增,则公式为: V=(A/Y+b/Y2) [1—1/(1+Y) t] —b/Y×t/(1+Y) t+Vt/(1+Y) t
•如果净收益按一定数额递减,则公式为: V=A/Y—g [1— (1+g/1+Y) t]+b/Y×t/(1+Y) t+Vt/(1+Y) t
•如果净收益按一定比率递增,则公式为: V=A/Y—g [1— (1+g/1+Y) t]+Vt/(1+Y) t
•如果净收益按一定比率递减,则公式为: V=A/Y+g [1— (1+g/1+Y) t]+Vt/(1+Y) t
•如果难以预测未来的价格公式为:V=A[ (1+Y) t—1] /Y[(1+Y) t— (1+△) ]
=A/ Y—△×Y/(1+Y) t—1=A/ Y —△a
上式中:a—偿债基金系数;A—净收益;V—房地产收益价格又称现值;Y—报酬率(折现率) ;△—增值率;
6.3净收益
•潜在毛收入(PGI) ;•有效毛收入(EGI) ;•净运营收益(NOI) ;•税前现金流量(PTCF) ;•运营费用率(OER)
•税后现金流量(ATCF) ;•净收益率(NIR)
•如果净收益按一定数额递增,则公式为: V=(A/Y+b/Y2) [1—1/(1+Y) t] —b/Y×t/(1+Y) t+Vt/(1+Y) t
•如果净收益按一定数额递减,则公式为: V=A/Y—g [1— (1+g/1+Y) t]+b/Y×t/(1+Y) t+Vt/(1+Y) t
•如果净收益按一定比率递增,则公式为: V=A/Y—g [1— (1+g/1+Y) t]+Vt/(1+Y) t
•如果净收益按一定比率递减,则公式为: V=A/Y+g [1— (1+g/1+Y) t]+Vt/(1+Y) t
•如果难以预测未来的价格公式为:V=A[ (1+Y) t—1] /Y[(1+Y) t— (1+△) ]
=A/ Y—△×Y/(1+Y) t—1=A/ Y —△a
上式中:a—偿债基金系数;A—净收益;V—房地产收益价格又称现值;Y—报酬率(折现率) ;△—增值率;
6.3净收益
•潜在毛收入(PGI) ;•有效毛收入(EGI) ;•净运营收益(NOI) ;•税前现金流量(PTCF) ;•运营费用率(OER)
•税后现金流量(ATCF) ;•净收益率(NIR)
•净收益率=1—运营费用率
•净收益=潜在毛收入—空置等造成的收入损失—运营费用
=有效毛收入—运营费用(运营费用,不包含房地产抵押贷款还本付息额、会计上的折旧额、房地产改扩建费用和所得税)
•有租约限制下的价值=无租约限制下的价值一承租人权益的价值
6.4报酬率
•报酬率=无风险报酬率+投资风险补偿+管理负担补偿+缺乏流动性补偿一投资带来的优惠
6.5直接资本化法
•资本化率=年收益/价格
•V=NOI/R 上式中:V—房地产价值;NOI—房地产未来第一年的净收益;R—资本化率;
•收益乘数是房地产的价格除以其某种年收益所得的倍数,即: 收益乘数=价格/年收益
•利用收益乘数将年收益转换为价值的直接资本化法公式为: 房地产价值=年收益×收益乘数
•房地产价值=毛租金×毛租金乘数
•净收益=潜在毛收入—空置等造成的收入损失—运营费用
=有效毛收入—运营费用(运营费用,不包含房地产抵押贷款还本付息额、会计上的折旧额、房地产改扩建费用和所得税)
•有租约限制下的价值=无租约限制下的价值一承租人权益的价值
6.4报酬率
•报酬率=无风险报酬率+投资风险补偿+管理负担补偿+缺乏流动性补偿一投资带来的优惠
6.5直接资本化法
•资本化率=年收益/价格
•V=NOI/R 上式中:V—房地产价值;NOI—房地产未来第一年的净收益;R—资本化率;
•收益乘数是房地产的价格除以其某种年收益所得的倍数,即: 收益乘数=价格/年收益
•利用收益乘数将年收益转换为价值的直接资本化法公式为: 房地产价值=年收益×收益乘数
•房地产价值=毛租金×毛租金乘数
•毛租金乘数是市场上房地产的价格除以其毛租金所得的倍数,即:毛租金乘数=价格/毛租金(毛租金乘数也是经常所讲的“租售比价”)
•V=PGI×PGIM潜在毛收入乘数是市场上房地产的价格除以其年潜在毛收入所得的倍数,即:PGIM=V/PGI
•V=EGI×EGIM有效毛收入乘数是房地产的价格除以其年有效毛收入所得的倍数,即:EGIM=V/EGI
•V=NOI×NIM净收益乘数是房地产的价格除以其年净收益所得的倍数,即:NIM=V/NOI
由于净收益乘数与资本化率是互为倒数的关系,通常很少直接采用净收益乘数法形式,而采用资本化率将净收益转换为价值的形式,即:V=NOI/R
•净收益率与有效毛收入乘数之比求取综合资本化率的公式为:Ro=NIR/EGIM
因为NIR=1—OER所以 Ro=(1—OER)/EGIM 上述公式的来源是:
因为 Ro=NOI/V所以,将上述等式右边的分子和分母同时除以有效毛收入(EGl)得:Ro=NIR/EGIM
上式中:Ro—综合资本化率;OER—运营费用;V—房产价格;NIR—净收益率;EGIM—有效毛收入乘数;
•V=PGI×PGIM潜在毛收入乘数是市场上房地产的价格除以其年潜在毛收入所得的倍数,即:PGIM=V/PGI
•V=EGI×EGIM有效毛收入乘数是房地产的价格除以其年有效毛收入所得的倍数,即:EGIM=V/EGI
•V=NOI×NIM净收益乘数是房地产的价格除以其年净收益所得的倍数,即:NIM=V/NOI
由于净收益乘数与资本化率是互为倒数的关系,通常很少直接采用净收益乘数法形式,而采用资本化率将净收益转换为价值的形式,即:V=NOI/R
•净收益率与有效毛收入乘数之比求取综合资本化率的公式为:Ro=NIR/EGIM
因为NIR=1—OER所以 Ro=(1—OER)/EGIM 上述公式的来源是:
因为 Ro=NOI/V所以,将上述等式右边的分子和分母同时除以有效毛收入(EGl)得:Ro=NIR/EGIM
上式中:Ro—综合资本化率;OER—运营费用;V—房产价格;NIR—净收益率;EGIM—有效毛收入乘数;
NOI—某一年的净收益;
•在净收益每年不变且持续无限年的情况下,报酬资本化法的公式为:V=A/Y
•在净收益每年不变但收益年限为有限年的情况下,报酬资本化法的公式为:
V=A/Y [1—1/(1+Y)n] R=Y/[1—1/(1+Y)n]
•在净收益按一定比率g递增并收益期限为无限年的情况下,报酬资本化法的公式为:V=A/Y—g
•在预知未来若干年后的价格相对变动的情况下,报酬资本化法的公式为:V=A/Y—△×Y/(1+Y)t—1或
R= Y—△×Y/(1+Y)t—1
6.6投资组合和剩余技术
式中:Ro—综合资本化率;RL—土地资本化率;RB—建筑物资本化率;VL—土地价值;VB—建筑物价值;
V—土地价值占房地价值的比率;B—建筑物价值占房地价值的比率,L+B=100%;
•Ro=VL×RL+VB×RB/ VL+VB •RL=(VL+VB)RO—VB×RB/VL •RB=( VL+VB)RO— VL×RL/VB
•在净收益每年不变且持续无限年的情况下,报酬资本化法的公式为:V=A/Y
•在净收益每年不变但收益年限为有限年的情况下,报酬资本化法的公式为:
V=A/Y [1—1/(1+Y)n] R=Y/[1—1/(1+Y)n]
•在净收益按一定比率g递增并收益期限为无限年的情况下,报酬资本化法的公式为:V=A/Y—g
•在预知未来若干年后的价格相对变动的情况下,报酬资本化法的公式为:V=A/Y—△×Y/(1+Y)t—1或
R= Y—△×Y/(1+Y)t—1
6.6投资组合和剩余技术
式中:Ro—综合资本化率;RL—土地资本化率;RB—建筑物资本化率;VL—土地价值;VB—建筑物价值;
V—土地价值占房地价值的比率;B—建筑物价值占房地价值的比率,L+B=100%;
•Ro=VL×RL+VB×RB/ VL+VB •RL=(VL+VB)RO—VB×RB/VL •RB=( VL+VB)RO— VL×RL/VB
•Ro=L×RL+B×RB •Ro=L×RL+(1—L)RB •Ro=(1—B) RL+B×RB
•抵押贷款常数的计算公式为:Ro=M×RM+(1—M)×RE
•在分期等额本息偿还贷款的情况下,抵押贷款常数的计算公式为:RM=YM×(1+YM)n/(1+YM)n—1
= YM+YM/(1+YM)n—1
式中:RM—抵押贷款常数;YM—抵押贷款报酬率,即抵押贷款利率(i);n—抵押贷款期限;
•房地产的价格=抵押贷款金额+自有资金额 •房地产净收益=抵押贷款收益+自有资金收益
•直接资本化法的土地剩余技术公式 为: VL= AO—VB×RB/ RL
•直接资本化法的建筑物剩余技术公式为: VB= AO—VL×RL/ RB
上式中:VL—土地价值;AO—土地与地上建筑物共同产生的净收益;VB—建筑物价值;RB—建筑物资本化率;
RL—土地资本化率;
房地产利润•直接资本化法的自由资金剩余技术公式为: VE= AO—VM×RM/ RE
•抵押贷款常数的计算公式为:Ro=M×RM+(1—M)×RE
•在分期等额本息偿还贷款的情况下,抵押贷款常数的计算公式为:RM=YM×(1+YM)n/(1+YM)n—1
= YM+YM/(1+YM)n—1
式中:RM—抵押贷款常数;YM—抵押贷款报酬率,即抵押贷款利率(i);n—抵押贷款期限;
•房地产的价格=抵押贷款金额+自有资金额 •房地产净收益=抵押贷款收益+自有资金收益
•直接资本化法的土地剩余技术公式 为: VL= AO—VB×RB/ RL
•直接资本化法的建筑物剩余技术公式为: VB= AO—VL×RL/ RB
上式中:VL—土地价值;AO—土地与地上建筑物共同产生的净收益;VB—建筑物价值;RB—建筑物资本化率;
RL—土地资本化率;
房地产利润•直接资本化法的自由资金剩余技术公式为: VE= AO—VM×RM/ RE
•直接资本化法的抵押贷款剩余技术公式为: VM= AO—VE×RE/ RM
上式中:VE—自有资金权益价值;AO—房地产净收益;VM—抵押贷款金额;RM—抵押贷款常数;
RE—自有资金资本化率;
6.7净收益与资本化率的匹配
①由土地收益求取土地价格:土地价格=土地净收益/土地资本化率
②由建筑物收益求取建筑物价格:建筑物价格=建筑物净收益/建筑物资本化率
③由房地收益求取房地价格:房地价格=房地净收益/综合资本化率
④由房地收益单独求取土地价格:
•土地价格=房地净收益—建筑物净收益/土地资本化率
•土地价格=房地净收益—建筑物价格×建筑物资本化率/土地资本化率
•土地价格=房地净收益/综合资本化率—建筑物价格
⑤由房地收益单独求取建筑物价格:
•建筑物价格=房地净收益—土地净收益/建筑物资本化率
•建筑物价格=房地净收益—土地价格×土地资本化率/建筑物资本化率
上式中:VE—自有资金权益价值;AO—房地产净收益;VM—抵押贷款金额;RM—抵押贷款常数;
RE—自有资金资本化率;
6.7净收益与资本化率的匹配
①由土地收益求取土地价格:土地价格=土地净收益/土地资本化率
②由建筑物收益求取建筑物价格:建筑物价格=建筑物净收益/建筑物资本化率
③由房地收益求取房地价格:房地价格=房地净收益/综合资本化率
④由房地收益单独求取土地价格:
•土地价格=房地净收益—建筑物净收益/土地资本化率
•土地价格=房地净收益—建筑物价格×建筑物资本化率/土地资本化率
•土地价格=房地净收益/综合资本化率—建筑物价格
⑤由房地收益单独求取建筑物价格:
•建筑物价格=房地净收益—土地净收益/建筑物资本化率
•建筑物价格=房地净收益—土地价格×土地资本化率/建筑物资本化率
•建筑物价格=房地净收益/综合资本化率—土地价格
7.2假设开发法的基本公式
•待开发房地产的价值=开发完成后的房地产价值—开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—投资者购买待开发房地产应负担的税费
•生地价值=开发完成后的房地产价值—由生地建成房屋的开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—买方购买生地应负担的税费
•生地价值=开发完成后的熟地价值—由生地开发成熟地的开发成本—管理费用—投资利息—销售费用—销售税费—土地开发利润—买方购买生地应负担的税费
•毛地价值=开发完成后的房地产价值—由毛地建成房屋的开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—买方购买毛地应负担的税费
•毛地价值=开发完成后的熟地价值一由毛地开发成熟地的开发成本一管理费用一投资利息一销售费用一销售税费一土地开发利润一买方购买毛地应负担的税费
•熟地价值=开发完成后的房地产价值一由熟地建成房屋的开发成本一管理费用一投资利息一销售费用一销售税费一开发利润一买方购买熟地应负担的税费
•在建工程价值=续建完成后的房地产价值一续建成本一管理费用一投资利息一销售费用一销
7.2假设开发法的基本公式
•待开发房地产的价值=开发完成后的房地产价值—开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—投资者购买待开发房地产应负担的税费
•生地价值=开发完成后的房地产价值—由生地建成房屋的开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—买方购买生地应负担的税费
•生地价值=开发完成后的熟地价值—由生地开发成熟地的开发成本—管理费用—投资利息—销售费用—销售税费—土地开发利润—买方购买生地应负担的税费
•毛地价值=开发完成后的房地产价值—由毛地建成房屋的开发成本—管理费用—投资利息—销售费用—销售税费—开发利润—买方购买毛地应负担的税费
•毛地价值=开发完成后的熟地价值一由毛地开发成熟地的开发成本一管理费用一投资利息一销售费用一销售税费一土地开发利润一买方购买毛地应负担的税费
•熟地价值=开发完成后的房地产价值一由熟地建成房屋的开发成本一管理费用一投资利息一销售费用一销售税费一开发利润一买方购买熟地应负担的税费
•在建工程价值=续建完成后的房地产价值一续建成本一管理费用一投资利息一销售费用一销
售税费一续建投资利润一买方购买在建工程应负担的税费
•旧房价值=装修改造完成后的房地产价值一装修改造成本一管理费用一投资利息一销售费用一销售税费一装修改造投资利润一买方购买旧房应负担的税费
•适用于开发完成后出售的公式:V=VP—C
•适用于开发完成后出租、营业的公式:V=VR—C
上式中:V—待开发房地产的价值;VP—用市场法或长期趋势法测算的开发完成后的房地产价值;VC—应扣除项目
VR—用收益法测算的开发完成后的房地产价值;
7.4假设开发法计算中各项的求取
•利率=单位时间内的利息/本金×100%
•I=P×i×n •F=P(1+i×n)
•复利的本利和计算公式为:F=P(1+i)n
•复利的总利息计算公式为:I=P[(1十i)n—1]
•在名义利率下的本利和为:F=P(1+r/m)n×m
•在名义利率下的一年末本利和为:F=P(1+r/m)m
•旧房价值=装修改造完成后的房地产价值一装修改造成本一管理费用一投资利息一销售费用一销售税费一装修改造投资利润一买方购买旧房应负担的税费
•适用于开发完成后出售的公式:V=VP—C
•适用于开发完成后出租、营业的公式:V=VR—C
上式中:V—待开发房地产的价值;VP—用市场法或长期趋势法测算的开发完成后的房地产价值;VC—应扣除项目
VR—用收益法测算的开发完成后的房地产价值;
7.4假设开发法计算中各项的求取
•利率=单位时间内的利息/本金×100%
•I=P×i×n •F=P(1+i×n)
•复利的本利和计算公式为:F=P(1+i)n
•复利的总利息计算公式为:I=P[(1十i)n—1]
•在名义利率下的本利和为:F=P(1+r/m)n×m
•在名义利率下的一年末本利和为:F=P(1+r/m)m
•假设实际年利率为i则在实际利率下的一年末本利的为:F=P(1+i)
•令一年末名义利率与实际利率的本利和相等,即P(1+i)=P(1+r/m)m得出i=(1+r/m)m—1
•名义利率与实际利率的关系,还可以通过利率的计算公式得出,即i=(F—P)/P =P(1+r/m)m—P/P=(1+r/m)m—1
上7.4式中: i—利率; n—计息周期数; I—总利息; F—计息期末的本利和; r—名义年利率; m—一年中计息m次; r/m—每次计息的利率;P—本金;
8.2数学曲线似合法
•Y=a+bX
•a=(∑Y—b×∑X)/N
•b=(N×∑XY—∑X×∑Y)/ N×∑X2—(∑X)2
当∑X=0时, •a=∑Y /N •b=∑XY/∑X2
上式中:Y—各期的房地产价格; X—时间; a ,b—为末知参数; N—时间序列的项数;
8.3平均增减量法
•Vi=Po十d×i
•d=(P1—Po)+(P2—P1)+…+(Pi—Pi—1)+…+(Pn—Pn—1)/n =(Pn—P0)/n
•令一年末名义利率与实际利率的本利和相等,即P(1+i)=P(1+r/m)m得出i=(1+r/m)m—1
•名义利率与实际利率的关系,还可以通过利率的计算公式得出,即i=(F—P)/P =P(1+r/m)m—P/P=(1+r/m)m—1
上7.4式中: i—利率; n—计息周期数; I—总利息; F—计息期末的本利和; r—名义年利率; m—一年中计息m次; r/m—每次计息的利率;P—本金;
8.2数学曲线似合法
•Y=a+bX
•a=(∑Y—b×∑X)/N
•b=(N×∑XY—∑X×∑Y)/ N×∑X2—(∑X)2
当∑X=0时, •a=∑Y /N •b=∑XY/∑X2
上式中:Y—各期的房地产价格; X—时间; a ,b—为末知参数; N—时间序列的项数;
8.3平均增减量法
•Vi=Po十d×i
•d=(P1—Po)+(P2—P1)+…+(Pi—Pi—1)+…+(Pn—Pn—1)/n =(Pn—P0)/n
上式中:Vi—第i 期房地产价格的趋势值; i—时期序数; Po—基期增减量的平均数; d—逐期增减量的平均数;
Pi—第i期房地产价格的实际值;
8.4平均发展速度法
•Vi=P0×ti •t=(P1/P0×P2/P1×P3/P2…×Pi/Pi—1×…×Pn/Pn—1)1/n =(Pn/P0)1/n
上式中:t—平均发展速度;
8.6指数修匀法
下式中:Vi—第i期的预测值; Pi—第i期的实测值; Vi+1—第i+1期的预测值; a—修匀常数,0≤a≤1公式为:
•Vi+1= Vi+a(Pi—Vi) = aPi+(1—a) Vi •Vi+1= aPi+(1—a) Vi •Vi+1= Vi+a(Pi—Vi)
9.1路线价法
临街深度价格修正率的形式
临街深度(英尺) 25 50 75 100 125 150 175 200
四三二一法则(%) 40 30 20 10 9 8 7 6
Pi—第i期房地产价格的实际值;
8.4平均发展速度法
•Vi=P0×ti •t=(P1/P0×P2/P1×P3/P2…×Pi/Pi—1×…×Pn/Pn—1)1/n =(Pn/P0)1/n
上式中:t—平均发展速度;
8.6指数修匀法
下式中:Vi—第i期的预测值; Pi—第i期的实测值; Vi+1—第i+1期的预测值; a—修匀常数,0≤a≤1公式为:
•Vi+1= Vi+a(Pi—Vi) = aPi+(1—a) Vi •Vi+1= aPi+(1—a) Vi •Vi+1= Vi+a(Pi—Vi)
9.1路线价法
临街深度价格修正率的形式
临街深度(英尺) 25 50 75 100 125 150 175 200
四三二一法则(%) 40 30 20 10 9 8 7 6
单独深度价格修正率(%) 40 30 20 10 9 8 7 6
累计深度价格修正率(%) 40 70 90 100 109 117 124 130
平均深度价格修正率(%) 160
(40) 140
(35) 120
(30) 100
(25) 87.2
(21.8) 78.0
(19.5) 70.8
(17.7) 65.0
(16.25)
•平均深度价格修正率=累计深度价格修正率×标准临街深度/所给临街深度
9.1.7路线价法计算公式(以标准临宗地的单价为路线价、采用平均深度价格修正率为例)
①一面临街矩形土地价值的计算公式:
•V(单价) =u×dυ •V(总价) =u×dυ×(f×d)
累计深度价格修正率(%) 40 70 90 100 109 117 124 130
平均深度价格修正率(%) 160
(40) 140
(35) 120
(30) 100
(25) 87.2
(21.8) 78.0
(19.5) 70.8
(17.7) 65.0
(16.25)
•平均深度价格修正率=累计深度价格修正率×标准临街深度/所给临街深度
9.1.7路线价法计算公式(以标准临宗地的单价为路线价、采用平均深度价格修正率为例)
①一面临街矩形土地价值的计算公式:
•V(单价) =u×dυ •V(总价) =u×dυ×(f×d)
上式中:V—土地价值; u—路线价; dυ—临街深度价格修正率; f—临街宽度;d—临街深度
②前后两面临街矩形土地价值的计算公式:
•V(总价) = uo×dυo×f×d o+u1×dυ1×f×(d—d o) •V(单价) = uo×dυo×d o+u1×dυ1×(d—d o)/ d
上式中:V—土地价值; uo—前街路线价; dυo—前街临街深度价格修正率; f—临街宽度;d—总深度;
d o—前街影响深度; υ1—后街路线价; dυ1—后街临街深度价格修正率;
③矩形街角地价值的计算公式:
•V(单价) = uo×dυo+u1×dυ1×t •V(总价) = (uo×dυo+u1×dυ1×t)×(f×d)
上式中:V—土地价值; uo—正街路线价; dυo—正街临街深度价格修正率; υ1—旁街路线价;
dυ1—旁街临街深度价格修正率; t—旁街影响加价率; f—临街宽度; d—临街深度;
④三角形土地价值的计算公式:
•V(单价) = u×dυ×h •V(总价) = u×dυ×h×(f×d÷2)
上式中:V—土地价值; u—路线价; dυ—临街深度价格修正率; h—三角形土地价格修正率;
f—临街宽度; d—临街深度;
②前后两面临街矩形土地价值的计算公式:
•V(总价) = uo×dυo×f×d o+u1×dυ1×f×(d—d o) •V(单价) = uo×dυo×d o+u1×dυ1×(d—d o)/ d
上式中:V—土地价值; uo—前街路线价; dυo—前街临街深度价格修正率; f—临街宽度;d—总深度;
d o—前街影响深度; υ1—后街路线价; dυ1—后街临街深度价格修正率;
③矩形街角地价值的计算公式:
•V(单价) = uo×dυo+u1×dυ1×t •V(总价) = (uo×dυo+u1×dυ1×t)×(f×d)
上式中:V—土地价值; uo—正街路线价; dυo—正街临街深度价格修正率; υ1—旁街路线价;
dυ1—旁街临街深度价格修正率; t—旁街影响加价率; f—临街宽度; d—临街深度;
④三角形土地价值的计算公式:
•V(单价) = u×dυ×h •V(总价) = u×dυ×h×(f×d÷2)
上式中:V—土地价值; u—路线价; dυ—临街深度价格修正率; h—三角形土地价格修正率;
f—临街宽度; d—临街深度;
⑤其他形状土地价值的计算。通常是先将其划分为矩形、三角形土地,然后分别计算这些矩形、三角形土地的价值再相加减
9.4高层建筑地价分摊的方法
①按建筑面积进行分摊
某部分享有的地价数额=土地总价值/总建筑面积×该部分的建筑面积
某部分占有的土地份额=该部分享有的地价数额/土地总价值=该部分的建筑面积/总建筑面积
②按房地价值进行分摊
某部分享有的地价数额=土地总价值/房地总价值×该部分的房地价值
某部分占有的土地份额=该部分享有的地价数额/土地总价值=该部分的房地价值/房地总价值
③按土地价值进行分摊
某部分占有的土地份额=该部分的房地价值—该部分的建筑物价值/房地总价值—建筑物总价值
某部分享有的地价数额=该部分占有的土地份额×土地总价值=该部分的房地价值一该部分
9.4高层建筑地价分摊的方法
①按建筑面积进行分摊
某部分享有的地价数额=土地总价值/总建筑面积×该部分的建筑面积
某部分占有的土地份额=该部分享有的地价数额/土地总价值=该部分的建筑面积/总建筑面积
②按房地价值进行分摊
某部分享有的地价数额=土地总价值/房地总价值×该部分的房地价值
某部分占有的土地份额=该部分享有的地价数额/土地总价值=该部分的房地价值/房地总价值
③按土地价值进行分摊
某部分占有的土地份额=该部分的房地价值—该部分的建筑物价值/房地总价值—建筑物总价值
某部分享有的地价数额=该部分占有的土地份额×土地总价值=该部分的房地价值一该部分
的建筑物价值
•地价=地租/利息率
•地租量=农产品的市场价格—农产品的销售税费一农产品的生产成本—土地上投入资本的利息—农业经营者的利润
地
•地价=地租/利息率
•地租量=农产品的市场价格—农产品的销售税费一农产品的生产成本—土地上投入资本的利息—农业经营者的利润
地
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论