人教版八年级数学下册期中试卷(附答案)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B. C. D.
2.已知,,则代数式的值是( )
A.24 B.± C. D.
3.设的整数部分为a,小数部分为b,则的值为( )
A. B. C. D.
4.化简x,正确的是( )
A. B. C.﹣ D.﹣
5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( )
A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.an与bn
6.菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形
7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是( )
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
8.下面四个图形分别是节能、节水、低碳和绿食品标志,在这四个标志中,是轴对称图形的是( )
A. B. C. D.
9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
10.下列选项中,不能判定四边形ABCD是平行四边形的是
A., B.,
C., D.,
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.
2.因式分解:__________.
八年级数学期中试卷3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.
4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.
5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.
6.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 .
三、解答题(本大题共6小题,共72分)
1.解方程:
(1) (2)
2.先化简,再求值:,其中m=+1.
3.已知a=,求的值.
4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论