2017-2020学年山西省太原市八年级(下)期中数学试卷
一、选择题(本大题含10个小题,每小题3分,共30分)在下列每小题给出的四个选项中,只有一个符合要求,请选出并填入下表相应位置
1.已知a,b均为实数,且a﹣1>b﹣1,下列不等式中一定成立的是( )
A.a<b B.3a<3b C.﹣a>﹣b D.a﹣2>b﹣2
2.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )
A. B.
C. D.
3.如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是( )八年级数学期中试卷
A.x>﹣1 B.x>2 C.x≥2 D.﹣1<x≤2
4.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣4),C(4,﹣1).将△ABC平移得到△A1B1C1,若点A的对应点A1的坐标为(﹣2,3),则△ABC平移的方式可以为( )
A.向左3个单位,向上5个单位
B.向左5个单位,向上3个单位
C.向右3个单位,向下5个单位
D.向右5个单位,向下3个单位
5.解不等式时,去分母后结果正确的为( )
A.2(x+2)>1﹣3(x﹣3) B.2x+4>6﹣3x﹣9
C.2x+4>6﹣3x+3 D.2(x+2)>6﹣3(x﹣3)
6.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有( )
A.3个 B.4个 C.5个 D.6个
7.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为( )
A.26 B.20 C.15 D.13
8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
A.210x+90(15﹣x)≥1800 B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1.8 D.90x+210(15﹣x)≤1.8
9.如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为( )
A.x≤2 B.x≥2 C.0<x≤2 D.2≤x≤6
10.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是( )
A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E
二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上
11.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t的车辆通过桥梁.设一辆自重10t的卡车,其载重的质量为xt,若它要通过此座桥,则x应满足的关系为 (用含x的不等式表示).
12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为 .
13.不等式组的整数解为 .
14.如图,在Rt△ABC中,∠C=90°,∠A=30°,点D,点E分别在边AC,AB上,且DE垂直平分AB.若AD=2,则CD的长为 .
15.如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF的长为 .
三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程)
16.(5分)解不等式:2x+1≤3(3﹣x)
17.(6分)解不等式组,并将其解集表示在如图所示的数轴上.
18.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为 ;
(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.
19.(6分)近年来,随着我国国民经济的飞速发展,我国物流业的市场需求持续扩大,某物流公司承接A、B两种货物的运输业务,已知A种货物运费单价为80元/吨,B种货物运费单价为50元/吨.该物流公司预计4月份运输这两种货物共300吨,且当月运送这两种货物收入的运费总额不低于19800元,求该物流公司4月份至少要承接运输A种货物多少吨?
20.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,延长CB至点E,延长BC至点F,使BE=CF,连接AE、AF.
求证:AD平分∠EAF.
21.(9分)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:
A | B | |
方案一 | 按标价的“七折”优惠 | 按标价的“八折”优惠 |
方案二 | 若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠 | |
若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?
22.(10分)如图1,已知射线AP是∠MAN的角平分线,点B为射线AP上的一点且AB=10,过点B分别作BC⊥AM于点C,作BD⊥AN于点D,BC=6.
(1)在图1中连接CD交AB于点O.求证:AB垂直平分CD;
(2)从A,B两题中任选一题作答,我选择 题
A.将图1中的△ABC沿射线AP的方向平移得到△ABC,点A、B、C的对应点分别为A′、B′、C′.若平移后点B的对应点B′的位置如图2,连接DB′.
①请在图2中画出此时的△A′B′C′,并在图中标注相应的字母;
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论