证明函数单调性的方法总结
函数单调性
证明函数单调性的方法总结
证明函数单调性的方法总结
函数的单调性是函数的一个重要性质,下面是小编整理的证明函数单调性的方法总结,希望对大家有帮助!
1、定义法:
利用定义证明函数单调性的一般步骤是:
①任取x1、x2∈D,且x1<x2;
②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);
③依据差式的符号确定其增减性。
2、导数法:
设函数y=f(x)在某区间D内可导。如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)
在区间D内为减函数。
注意:(补充)
(1)若使得f′(x)=0的x的值只有有限个,
则如果f ′(x)≥0,则f(x)在区间D内为增函数;
如果f′(x) ≤0,则f(x)在区间D内为减函数。
(2)单调性的判断方法:
定义法及导数法、图象法、
复合函数的单调性(同增异减)、
用已知函数的单调性等
(补充)单调性的有关结论
1、若f(x),g(x)均为增(减)函数,
则f(x)+g(x)仍为增(减)函数。
2、若f(x)为增(减)函数,
则-f(x)为减(增)函数,如果同时有f(x)>0,
为减(增)函数,
为增(减)函数
3、互为反函数的两个函数有相同的单调性。
4、y=f[g(x)]是定义在M上的函数,
若f(x)与g(x)的单调性相同,
则其复合函数f[g(x)]为增函数;
若f(x)、g(x)的单调性相反,
则其复合函数f[g(x)]为减函数。简称”同增异减”
5. 奇函数在关于原点对称的.两个区间上的单调性相同;
偶函数在关于原点对称的两个区间上的单调性相反。
函数单调性的应用
(1)求某些函数的值域或最值。
(2)比较函数值或自变量值的大小。
(3)解、证不等式。
(4)求参数的取值范围或值。
(5)作函数图象。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。